Layered Li[Ni1/3Co1/3Mn1/3]O2 was synthesized with complex metal hydroxide precursors that were prepared by a co-precipitation method.The influence of coordination between ammonia and transition-metal cations on the s...Layered Li[Ni1/3Co1/3Mn1/3]O2 was synthesized with complex metal hydroxide precursors that were prepared by a co-precipitation method.The influence of coordination between ammonia and transition-metal cations on the structural and electrochemical properties of the Li[Ni1/3Co1/3Mn1/3]O2 materials was studied.It is found that when the molar ratio of ammonia to total transition-metal cations is 2.7:1,uniform particle size distribution of the complex metal hydroxide is observed via scanning electron microscopy.The average particle size of Li[Ni1/3Co1/3Mn1/3]O2 materials was measured to be about 500 nm,and the tap-density was measured to be approximately 2.37 g/cm3,which is comparable with that of commercialized LiCoO2.XRD analysis indicates that the presently synthesized Li[Ni1/3Co1/3Mn1/3]O2 has a hexagonal layered-structure.The initial discharge capacity of the Li[Ni1/3Co1/3Mn1/3]O2 positive-electrode material is determined to be 181.5 mA·h/g using a Li/Li[Ni1/3Co1/3Mn1/3]O2 cell operated at 0.1C in the voltage range of 2.8-4.5 V.The discharge capacity at the 50th cycle at 0.5C is 170.6 mA·h/g.展开更多
Based on the characteristics of the top coal thickness of the fully mechanized caving in special thick coal seam,the long distance of coal gangue caving,as well as the different sizes of the coal gangue broken fragmen...Based on the characteristics of the top coal thickness of the fully mechanized caving in special thick coal seam,the long distance of coal gangue caving,as well as the different sizes of the coal gangue broken fragment dimension and spatial variation of drop flow,this paper uses laboratory dispersion simulation experiment and theoretical analysis to study the arch structure effect and its influence rule on the top coal loss in the process of coal gangue flow.Research shows that in the process of coal gangue flow,arch structure can be formed in three types:the lower arch structure,middle arch structure,and upper arch structure.Moreover,the arch structure has the characteristics of dynamic random arch,the formation probability of dynamic random arch with different layers is not the same,dynamic random arch caused the reduction of the top coal fluency;analyzing the dynamic random arch formation mechanism,influencing factors,and the conditions of instability;the formation probability of the lower arch structure is the highest,the whole coal arch and the coal gangue arch structure has the greatest impact on top coal loss.Therefore,to prevent or reduce the formation of lower whole coal arch structure,the lower coal gangue arch structure and the middle whole coal arch structure is the key to reduce the top coal loss.The research conclusion provides theoretical basis for the further improvement of the top coal recovery rate of the fully mechanized caving in extra thick coal seam.展开更多
Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope duri...Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope during excavation of a deep tunnel. Zonal disintegration phenomenon was successfully demonstrated in the laboratory with 3D tests on analogous gypsum models, two circular cracked zones were observed in the test. The linear Mohr-Coulomb yield criterion was used with a constitutive model that showed linear softening and ideal residual plastic to analyze the elasto-plastic field of the enclosing rock mass around a deep tunnel. The results show that tunneling causes a maximum stress zone to appear between an elastic and plastic zone in the surrounding rock. The zonal disintegration phenomenon is analyzed by considering the stress-strain state of the rock mass in the vicinity of the maximum stress zone. Creep instability failure of the rock due to the development of the plastic zone, and transfer of the maximum stress zone into the rock mass, are the cause of zonal disintegration. An analytical criterion for the critical depth at which zonal disintegration can occur is derived. This depth depends mainly on the character and stress concentration coefficient of the rock mass.展开更多
The photocatalytic degradation of norfloxacin by bismuth tungstate(Bi2WO6)with different hierarchical architectures wasinvestigated under visible light irradiation.Bi2WO6was prepared by hydrothermal method with the re...The photocatalytic degradation of norfloxacin by bismuth tungstate(Bi2WO6)with different hierarchical architectures wasinvestigated under visible light irradiation.Bi2WO6was prepared by hydrothermal method with the reaction solution pH rangingfrom4to11.The relatively ultrathin Bi2WO6nanoflakes prepared at pH4showed excellent adsorption and photodegradationefficiency towards norfloxacin.The characterization results showed that Bi2WO6prepared at pH4had a larger specific area andfaster photo-generated carrier separation rate.The decay rate reached the maximum in weak alkaline reaction solution,which couldbe attributed to the presence of moderate OH-anions.The present study demonstrated that the smaller size of Bi2WO6could be anefficient photocatalyst on the degradation of norfloxacin in the aquatic environment.展开更多
VAlN coating is of particular interest for dry cutting applications owing to its low-friction and excellent abrasiveness.Nano-multilayer structure is designed to tailor the properties of VAlN coating.In this work,a se...VAlN coating is of particular interest for dry cutting applications owing to its low-friction and excellent abrasiveness.Nano-multilayer structure is designed to tailor the properties of VAlN coating.In this work,a series of VAlN/Si_(3)N_(4) nano-multilayer coatings with varied Si_(3)N_(4) layer thicknesses were prepared by reactive sputtering method.The microstructure and mechanical properties of the coatings were both investigated.It is revealed that Si_(3)N_(4) with a shallow thickness(~0.4 nm)was crystallized and grown coherently with VAlN,showing a remarkable increase in hardness compared to VAlN monolayer coating.The hardness of coherently VAlN/Si_(3)N_(4) nano-multilayer coatings reached to 48.7 GPa.With further increase of Si_(3)N_(4) layer thickness,the coherent growth of nano-multilayers was terminated,showing amorphous structure formed in nano-multilayers and the hardness was declined.On the other hand,when Si_(3)N_(4) layer thickness was 0.4 nm,the friction coefficient of VAlN/Si_(3)N_(4) nano-multilayer coating was almost equal to that of VAlN monolayer coating,which was attributed to the crystallization of Si_(3)N_(4) and the produced coherent interfaces between VAlN and Si_(3)N_(4) for the hardening effect of nano-multilayer coatings.Upon further increase of Si_(3)N_(4) layer thickness,pronounced improvement of friction coefficient in VAlN/Si_(3)N_(4) nano-multilayer coating was observed.展开更多
Potassium-ion batteries(PIBs) hold great potential as an alternative to lithium-ion batteries due to the abundant reserves of potassium and similar redox potentials of K+/K and Li+/Li. Unfortunately, PIBs with carbona...Potassium-ion batteries(PIBs) hold great potential as an alternative to lithium-ion batteries due to the abundant reserves of potassium and similar redox potentials of K+/K and Li+/Li. Unfortunately, PIBs with carbonaceous electrodes present sluggish kinetics, resulting in unsatisfactory cycling stability and poor rate capability. Herein, we demonstrate that the synergistic effects of the enlarged interlayer spacing and enhanced capacitive behavior induced by the co-doping of nitrogen and sulfur atoms into a carbon structure(NSC) can improve its potassium storage capability. Based on the capacitive contribution calculations, electrochemical impedance spectroscopy, the galvanostatic intermittent titration technique, and density functional theory results, the NSC electrode is found to exhibit favorable electronic conductivity,enhanced capacitive adsorption behavior, and fast K+ ion diffusion kinetics. Additionally, a series of exsitu characterizations demonstrate that NSC exhibits superior structural stability during the(de)potassiation process. As a result, NSC displays a high reversible capacity of 302.8 mAh g-1 at 0.1 Ag-1 and a stable capacity of 105.2 m Ahg-1 even at 2 Ag-1 after 600 cycles. This work may offer new insight into the effects of the heteroatom doping of carbon materials on their potassium storage properties and facilitate their application in PIBs.展开更多
Few studies have to date gone behind the scenes to unveil the hidden metaphor-metonymy structure underpinning the input hypothesis ( Krashen 1981 ) despite overt attention paid to it over the years. In an effort to ...Few studies have to date gone behind the scenes to unveil the hidden metaphor-metonymy structure underpinning the input hypothesis ( Krashen 1981 ) despite overt attention paid to it over the years. In an effort to use a fine-grained metaphor-analysis approach( e. g. , Lakoffand Johnson 1980, 1999) to revisit the input hypothesis, this study looks into its thrust--the causal effect of comprehensible input upon comprehension--in the hope of charting out its hidden organization. By discovering a theme of CAUSATION pivoted on space-based metaphors and metonyrnies, the present study brings to relief two fallacies committed in the input hypothesis. First, the heavy dependence on the prototypicaUy physical-spatial hierarchy leads to a red-herring fallacy, whose inconsistency defies rather than supports its statement about comprehensible input as the overriding cause. Second, although there is no denying that comprehensible input is a significant source of language gains, to enthrone it as the sole causal variable to the exclusion of all the other important variables, especially the agency of the 1.2 learner who should have been positioned in the spotlight in the first place, is another fallacy of immense magnitude.展开更多
基金Project(50721003)supported by the National Natural Science Foundation of ChinaProject(07JJ6082)supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the Open Project of State Key Laboratory of Powder Metallurgy in Central South University,China
文摘Layered Li[Ni1/3Co1/3Mn1/3]O2 was synthesized with complex metal hydroxide precursors that were prepared by a co-precipitation method.The influence of coordination between ammonia and transition-metal cations on the structural and electrochemical properties of the Li[Ni1/3Co1/3Mn1/3]O2 materials was studied.It is found that when the molar ratio of ammonia to total transition-metal cations is 2.7:1,uniform particle size distribution of the complex metal hydroxide is observed via scanning electron microscopy.The average particle size of Li[Ni1/3Co1/3Mn1/3]O2 materials was measured to be about 500 nm,and the tap-density was measured to be approximately 2.37 g/cm3,which is comparable with that of commercialized LiCoO2.XRD analysis indicates that the presently synthesized Li[Ni1/3Co1/3Mn1/3]O2 has a hexagonal layered-structure.The initial discharge capacity of the Li[Ni1/3Co1/3Mn1/3]O2 positive-electrode material is determined to be 181.5 mA·h/g using a Li/Li[Ni1/3Co1/3Mn1/3]O2 cell operated at 0.1C in the voltage range of 2.8-4.5 V.The discharge capacity at the 50th cycle at 0.5C is 170.6 mA·h/g.
基金the Independent Research Subject of State Key Laboratory of Coal Resources and Mine Safety of China University of Mining and Technology (No.SKLCRSM12X03)the Scientific Research and Innovation Project for College Graduates in Jiangsu (No.CXZZ13_0947)+1 种基金Top-Notch Academic Programs of Jiangsu Higher Education Institutionsthe Priority Academic Development Program of Jiangsu Higher Education Institutions
文摘Based on the characteristics of the top coal thickness of the fully mechanized caving in special thick coal seam,the long distance of coal gangue caving,as well as the different sizes of the coal gangue broken fragment dimension and spatial variation of drop flow,this paper uses laboratory dispersion simulation experiment and theoretical analysis to study the arch structure effect and its influence rule on the top coal loss in the process of coal gangue flow.Research shows that in the process of coal gangue flow,arch structure can be formed in three types:the lower arch structure,middle arch structure,and upper arch structure.Moreover,the arch structure has the characteristics of dynamic random arch,the formation probability of dynamic random arch with different layers is not the same,dynamic random arch caused the reduction of the top coal fluency;analyzing the dynamic random arch formation mechanism,influencing factors,and the conditions of instability;the formation probability of the lower arch structure is the highest,the whole coal arch and the coal gangue arch structure has the greatest impact on top coal loss.Therefore,to prevent or reduce the formation of lower whole coal arch structure,the lower coal gangue arch structure and the middle whole coal arch structure is the key to reduce the top coal loss.The research conclusion provides theoretical basis for the further improvement of the top coal recovery rate of the fully mechanized caving in extra thick coal seam.
基金Projects 50490275 and 50525825 supported by the National Natural Science Foundation of China
文摘Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope during excavation of a deep tunnel. Zonal disintegration phenomenon was successfully demonstrated in the laboratory with 3D tests on analogous gypsum models, two circular cracked zones were observed in the test. The linear Mohr-Coulomb yield criterion was used with a constitutive model that showed linear softening and ideal residual plastic to analyze the elasto-plastic field of the enclosing rock mass around a deep tunnel. The results show that tunneling causes a maximum stress zone to appear between an elastic and plastic zone in the surrounding rock. The zonal disintegration phenomenon is analyzed by considering the stress-strain state of the rock mass in the vicinity of the maximum stress zone. Creep instability failure of the rock due to the development of the plastic zone, and transfer of the maximum stress zone into the rock mass, are the cause of zonal disintegration. An analytical criterion for the critical depth at which zonal disintegration can occur is derived. This depth depends mainly on the character and stress concentration coefficient of the rock mass.
基金Projects(51579096,51222805,51521006,51508175) supported by the National Natural Science Foundation of ChinaProject supported by the National Program for Support of Top-Notch Young Professionals of China+1 种基金Project(NCET–11–0129) supported by the Program for New Century Excellent Talents in University from the Ministry of Education of ChinaProject(CX2015B095) supported by the Hunan Province Innovation Foundation for Postgraduate,China
文摘The photocatalytic degradation of norfloxacin by bismuth tungstate(Bi2WO6)with different hierarchical architectures wasinvestigated under visible light irradiation.Bi2WO6was prepared by hydrothermal method with the reaction solution pH rangingfrom4to11.The relatively ultrathin Bi2WO6nanoflakes prepared at pH4showed excellent adsorption and photodegradationefficiency towards norfloxacin.The characterization results showed that Bi2WO6prepared at pH4had a larger specific area andfaster photo-generated carrier separation rate.The decay rate reached the maximum in weak alkaline reaction solution,which couldbe attributed to the presence of moderate OH-anions.The present study demonstrated that the smaller size of Bi2WO6could be anefficient photocatalyst on the degradation of norfloxacin in the aquatic environment.
基金Project(51201187)supported by the National Natural Science Foundation of China。
文摘VAlN coating is of particular interest for dry cutting applications owing to its low-friction and excellent abrasiveness.Nano-multilayer structure is designed to tailor the properties of VAlN coating.In this work,a series of VAlN/Si_(3)N_(4) nano-multilayer coatings with varied Si_(3)N_(4) layer thicknesses were prepared by reactive sputtering method.The microstructure and mechanical properties of the coatings were both investigated.It is revealed that Si_(3)N_(4) with a shallow thickness(~0.4 nm)was crystallized and grown coherently with VAlN,showing a remarkable increase in hardness compared to VAlN monolayer coating.The hardness of coherently VAlN/Si_(3)N_(4) nano-multilayer coatings reached to 48.7 GPa.With further increase of Si_(3)N_(4) layer thickness,the coherent growth of nano-multilayers was terminated,showing amorphous structure formed in nano-multilayers and the hardness was declined.On the other hand,when Si_(3)N_(4) layer thickness was 0.4 nm,the friction coefficient of VAlN/Si_(3)N_(4) nano-multilayer coating was almost equal to that of VAlN monolayer coating,which was attributed to the crystallization of Si_(3)N_(4) and the produced coherent interfaces between VAlN and Si_(3)N_(4) for the hardening effect of nano-multilayer coatings.Upon further increase of Si_(3)N_(4) layer thickness,pronounced improvement of friction coefficient in VAlN/Si_(3)N_(4) nano-multilayer coating was observed.
基金supported by the National Natural Science Foundation of China (51932011, 51972346, 51802356, and 51872334)Innovation-Driven Project of Central South University (2020CX024)the Fundamental Research Funds for the Central Universities of Central South University (2020zzts075)。
文摘Potassium-ion batteries(PIBs) hold great potential as an alternative to lithium-ion batteries due to the abundant reserves of potassium and similar redox potentials of K+/K and Li+/Li. Unfortunately, PIBs with carbonaceous electrodes present sluggish kinetics, resulting in unsatisfactory cycling stability and poor rate capability. Herein, we demonstrate that the synergistic effects of the enlarged interlayer spacing and enhanced capacitive behavior induced by the co-doping of nitrogen and sulfur atoms into a carbon structure(NSC) can improve its potassium storage capability. Based on the capacitive contribution calculations, electrochemical impedance spectroscopy, the galvanostatic intermittent titration technique, and density functional theory results, the NSC electrode is found to exhibit favorable electronic conductivity,enhanced capacitive adsorption behavior, and fast K+ ion diffusion kinetics. Additionally, a series of exsitu characterizations demonstrate that NSC exhibits superior structural stability during the(de)potassiation process. As a result, NSC displays a high reversible capacity of 302.8 mAh g-1 at 0.1 Ag-1 and a stable capacity of 105.2 m Ahg-1 even at 2 Ag-1 after 600 cycles. This work may offer new insight into the effects of the heteroatom doping of carbon materials on their potassium storage properties and facilitate their application in PIBs.
文摘Few studies have to date gone behind the scenes to unveil the hidden metaphor-metonymy structure underpinning the input hypothesis ( Krashen 1981 ) despite overt attention paid to it over the years. In an effort to use a fine-grained metaphor-analysis approach( e. g. , Lakoffand Johnson 1980, 1999) to revisit the input hypothesis, this study looks into its thrust--the causal effect of comprehensible input upon comprehension--in the hope of charting out its hidden organization. By discovering a theme of CAUSATION pivoted on space-based metaphors and metonyrnies, the present study brings to relief two fallacies committed in the input hypothesis. First, the heavy dependence on the prototypicaUy physical-spatial hierarchy leads to a red-herring fallacy, whose inconsistency defies rather than supports its statement about comprehensible input as the overriding cause. Second, although there is no denying that comprehensible input is a significant source of language gains, to enthrone it as the sole causal variable to the exclusion of all the other important variables, especially the agency of the 1.2 learner who should have been positioned in the spotlight in the first place, is another fallacy of immense magnitude.