This paper proposes an optimization model for the airport ground movement problem(GMP)based on bilevel programming to address taxi conflicts on the airport ground and to improve the operating safety and efficiency.To ...This paper proposes an optimization model for the airport ground movement problem(GMP)based on bilevel programming to address taxi conflicts on the airport ground and to improve the operating safety and efficiency.To solve GMP,an iterative heuristic algorithm is designed.Instead of separately investigating each problem,this model simultaneously coordinates and optimizes the aircraft routing and scheduling.A simulation test is conducted on Nanjing Lukou International Airport(NKG)and the results show that the bilevel programming model can clearly outperform the widely used first-come-first-service(FCFS)scheduling scheme in terms of aircraft operational time under the precondition of none conflict.The research effort demonstrates that with the reduced operating cost and the improved overall efficiency,the proposed model can assist operations of the airports that are facing increasing traffic demand and working at almost maximum capacity.展开更多
基金supported by the National Natural Science Foundations of China(Nos.U1933118,U2033205)。
文摘This paper proposes an optimization model for the airport ground movement problem(GMP)based on bilevel programming to address taxi conflicts on the airport ground and to improve the operating safety and efficiency.To solve GMP,an iterative heuristic algorithm is designed.Instead of separately investigating each problem,this model simultaneously coordinates and optimizes the aircraft routing and scheduling.A simulation test is conducted on Nanjing Lukou International Airport(NKG)and the results show that the bilevel programming model can clearly outperform the widely used first-come-first-service(FCFS)scheduling scheme in terms of aircraft operational time under the precondition of none conflict.The research effort demonstrates that with the reduced operating cost and the improved overall efficiency,the proposed model can assist operations of the airports that are facing increasing traffic demand and working at almost maximum capacity.