期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
3
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
结合区域增长与RANSAC的机载LiDAR点云屋顶面分割
被引量:
17
1
作者
赵传
郭海涛
+3 位作者
卢俊
余东行
林雨准
姜怀刚
《测绘学报》
EI
CSCD
北大核心
2021年第5期621-633,共13页
建筑物屋顶面大小差异较大、形状复杂、数量不确定等特点,以及机载LiDAR点云密度不均、分布不规则、缺乏语义信息等特性,对屋顶面的准确分割造成了很大干扰,因此现有分割方法的精度和适用性仍有待提高。针对上述问题,本文提出一种结合...
建筑物屋顶面大小差异较大、形状复杂、数量不确定等特点,以及机载LiDAR点云密度不均、分布不规则、缺乏语义信息等特性,对屋顶面的准确分割造成了很大干扰,因此现有分割方法的精度和适用性仍有待提高。针对上述问题,本文提出一种结合区域增长与RANSAC的机载LiDAR点云屋顶面分割方法。首先,引入稳健的法向量估计算法计算点云法向量,利用提出的迭代区域增长策略和RANSAC提取多个可靠屋顶面片;然后,基于可靠屋顶面片参数和RANSAC计算内点的思想,迭代合并可靠屋顶面片,并精化屋顶面参数;最后,计算未能通过前面步骤分割的点到各屋顶面的垂直距离,将其标记为距离最小且小于阈值的屋顶面,并通过局部范围内投票的方式精化屋顶面分割结果。利用多个具有代表性的建筑物点云和一组区域建筑物点云进行试验,结果表明,所提出的方法可有效地分割不同复杂程度的建筑物屋顶面,并能较好地分割面积较小的屋顶面,以屋顶面和单点为评价单元的平均分割正确率为95.56%和97.93%,分割的结果可为建筑物三维模型重建、点云精简等应用提供可靠的信息。
展开更多
关键词
屋顶面分割
迭代区域增长
RANSAC
机载LiDAR点云
下载PDF
职称材料
基于体素增长的机载LiDAR点云建筑物屋顶面分割
2
作者
王竞雪
蒋莹
王丽芹
《地球信息科学学报》
EI
CSCD
北大核心
2023年第12期2468-2486,共19页
建筑物屋顶面的准确分割对建筑物模型重建具有重要意义。但是由于建筑物屋顶面的种类繁多、大小差异大、形状复杂等特点,以及机载LiDAR点云数据的密度不均、数据量大等特性,传统分割方法存在欠分割、过分割以及小平面难以准确分割等问...
建筑物屋顶面的准确分割对建筑物模型重建具有重要意义。但是由于建筑物屋顶面的种类繁多、大小差异大、形状复杂等特点,以及机载LiDAR点云数据的密度不均、数据量大等特性,传统分割方法存在欠分割、过分割以及小平面难以准确分割等问题。针对上述问题,本文提出一种基于体素区域增长的机载LiDAR点云建筑物屋顶面分割方法,有效提升了复杂结构建筑物屋顶面的分割精度。首先,对点云数据进行体素化,根据PCA方法估计每个体素的法向量、曲率值。然后实现基于体素区域增长的初始屋顶面分割。该过程选取当前体素空间曲率最小值体素作为初始种子体素,以26邻域为增长方向,根据种子体素与待增长体素间的法向量夹角约束增长。迭代增长过程中根据当前种子体素与增长体素的曲率差绝对值确定待增长种子体素,直到未有新的种子体素出现停止增长。再次选择新的初始种子体素重复该过程,直到完成所有体素的分割。最后通过对初始分割结果中过分割屋顶面进行合并、屋顶面结构完整性修复、复杂建筑物的小平面提取等优化处理得到最终的屋顶面。本文选取ISPRS官网提供的Vaihingen和Toronto 2个地区的机载LiDAR点云数据,分别对其中代表性的单栋建筑物和区域建筑物进行屋顶面分割实验。结果表明,复杂建筑物屋顶面点云分割的完整率、正确率和分割质量结果分别为95.36%~99.58%、94.83%~100%和90.65%~98.28%。本文方法在解决欠分割和过分割问题的基础上,有效地提高了建筑物点云的屋顶面分割的精度。
展开更多
关键词
机载LIDAR
体素
体素化
区域增长
26邻域
屋顶面分割
主成分分析
点云法向量
原文传递
基于改进RANSAC算法的屋顶激光点云面片分割方法
被引量:
32
3
作者
胡伟
卢小平
+1 位作者
李珵
贾智乐
《测绘通报》
CSCD
北大核心
2012年第11期31-34,46,共5页
基于改进的随机抽样一致性算法(RANSAC)对建(构)筑物屋顶面片进行点云分割,通过改进种子点选取方式来提高面片分割的置信度,并将点到平面距离的标准差作为判断准则,以提高分割面片的准确性。同时,采用KD-Tree组织点云,根据空间平面的法...
基于改进的随机抽样一致性算法(RANSAC)对建(构)筑物屋顶面片进行点云分割,通过改进种子点选取方式来提高面片分割的置信度,并将点到平面距离的标准差作为判断准则,以提高分割面片的准确性。同时,采用KD-Tree组织点云,根据空间平面的法向量、连通性分析、点云的R半径密度对分割的面片进行优化处理,试验证明该方法能有效地对建筑物屋顶面片进行点云分割。
展开更多
关键词
RANSAC
激光点云
KD-TREE
屋顶
面
片
分割
R半径密度
下载PDF
职称材料
题名
结合区域增长与RANSAC的机载LiDAR点云屋顶面分割
被引量:
17
1
作者
赵传
郭海涛
卢俊
余东行
林雨准
姜怀刚
机构
火箭军指挥学院
信息工程大学地理空间信息学院
海图信息中心
出处
《测绘学报》
EI
CSCD
北大核心
2021年第5期621-633,共13页
基金
国家自然科学基金(41601507)。
文摘
建筑物屋顶面大小差异较大、形状复杂、数量不确定等特点,以及机载LiDAR点云密度不均、分布不规则、缺乏语义信息等特性,对屋顶面的准确分割造成了很大干扰,因此现有分割方法的精度和适用性仍有待提高。针对上述问题,本文提出一种结合区域增长与RANSAC的机载LiDAR点云屋顶面分割方法。首先,引入稳健的法向量估计算法计算点云法向量,利用提出的迭代区域增长策略和RANSAC提取多个可靠屋顶面片;然后,基于可靠屋顶面片参数和RANSAC计算内点的思想,迭代合并可靠屋顶面片,并精化屋顶面参数;最后,计算未能通过前面步骤分割的点到各屋顶面的垂直距离,将其标记为距离最小且小于阈值的屋顶面,并通过局部范围内投票的方式精化屋顶面分割结果。利用多个具有代表性的建筑物点云和一组区域建筑物点云进行试验,结果表明,所提出的方法可有效地分割不同复杂程度的建筑物屋顶面,并能较好地分割面积较小的屋顶面,以屋顶面和单点为评价单元的平均分割正确率为95.56%和97.93%,分割的结果可为建筑物三维模型重建、点云精简等应用提供可靠的信息。
关键词
屋顶面分割
迭代区域增长
RANSAC
机载LiDAR点云
Keywords
roof segmentation
iterative region growing
RANSAC
airborne LiDAR point cloud
分类号
P237 [天文地球—摄影测量与遥感]
下载PDF
职称材料
题名
基于体素增长的机载LiDAR点云建筑物屋顶面分割
2
作者
王竞雪
蒋莹
王丽芹
机构
辽宁工程技术大学测绘与地理科学学院
辽宁工程技术大学地理空间信息服务协同创新研究院
辽阳市国土资源勘查规划院
出处
《地球信息科学学报》
EI
CSCD
北大核心
2023年第12期2468-2486,共19页
基金
国家自然科学基金面上项目(41871379)
辽宁省兴辽英才计划项目(XLYC2007026)
辽宁省应用基础研究计划项目(2022JH2/101300273)。
文摘
建筑物屋顶面的准确分割对建筑物模型重建具有重要意义。但是由于建筑物屋顶面的种类繁多、大小差异大、形状复杂等特点,以及机载LiDAR点云数据的密度不均、数据量大等特性,传统分割方法存在欠分割、过分割以及小平面难以准确分割等问题。针对上述问题,本文提出一种基于体素区域增长的机载LiDAR点云建筑物屋顶面分割方法,有效提升了复杂结构建筑物屋顶面的分割精度。首先,对点云数据进行体素化,根据PCA方法估计每个体素的法向量、曲率值。然后实现基于体素区域增长的初始屋顶面分割。该过程选取当前体素空间曲率最小值体素作为初始种子体素,以26邻域为增长方向,根据种子体素与待增长体素间的法向量夹角约束增长。迭代增长过程中根据当前种子体素与增长体素的曲率差绝对值确定待增长种子体素,直到未有新的种子体素出现停止增长。再次选择新的初始种子体素重复该过程,直到完成所有体素的分割。最后通过对初始分割结果中过分割屋顶面进行合并、屋顶面结构完整性修复、复杂建筑物的小平面提取等优化处理得到最终的屋顶面。本文选取ISPRS官网提供的Vaihingen和Toronto 2个地区的机载LiDAR点云数据,分别对其中代表性的单栋建筑物和区域建筑物进行屋顶面分割实验。结果表明,复杂建筑物屋顶面点云分割的完整率、正确率和分割质量结果分别为95.36%~99.58%、94.83%~100%和90.65%~98.28%。本文方法在解决欠分割和过分割问题的基础上,有效地提高了建筑物点云的屋顶面分割的精度。
关键词
机载LIDAR
体素
体素化
区域增长
26邻域
屋顶面分割
主成分分析
点云法向量
Keywords
airborne LiDAR
voxel
voxelization
region growing
26-neighborhood
roof segmentation
principal component analysis
point cloud normal vector
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
P237 [天文地球—摄影测量与遥感]
原文传递
题名
基于改进RANSAC算法的屋顶激光点云面片分割方法
被引量:
32
3
作者
胡伟
卢小平
李珵
贾智乐
机构
河南理工大学矿山空间信息技术国家测绘地理信息局重点实验室
出处
《测绘通报》
CSCD
北大核心
2012年第11期31-34,46,共5页
基金
国家测绘科技项目(测科函[2011]16号)
文摘
基于改进的随机抽样一致性算法(RANSAC)对建(构)筑物屋顶面片进行点云分割,通过改进种子点选取方式来提高面片分割的置信度,并将点到平面距离的标准差作为判断准则,以提高分割面片的准确性。同时,采用KD-Tree组织点云,根据空间平面的法向量、连通性分析、点云的R半径密度对分割的面片进行优化处理,试验证明该方法能有效地对建筑物屋顶面片进行点云分割。
关键词
RANSAC
激光点云
KD-TREE
屋顶
面
片
分割
R半径密度
分类号
P237 [天文地球—摄影测量与遥感]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
结合区域增长与RANSAC的机载LiDAR点云屋顶面分割
赵传
郭海涛
卢俊
余东行
林雨准
姜怀刚
《测绘学报》
EI
CSCD
北大核心
2021
17
下载PDF
职称材料
2
基于体素增长的机载LiDAR点云建筑物屋顶面分割
王竞雪
蒋莹
王丽芹
《地球信息科学学报》
EI
CSCD
北大核心
2023
0
原文传递
3
基于改进RANSAC算法的屋顶激光点云面片分割方法
胡伟
卢小平
李珵
贾智乐
《测绘通报》
CSCD
北大核心
2012
32
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部