The modern transportation system is increasingly developed during recent years.It is an effective solution to set the noise barriers to reduce the traffic noise pollution caused by different kinds of transportation sy...The modern transportation system is increasingly developed during recent years.It is an effective solution to set the noise barriers to reduce the traffic noise pollution caused by different kinds of transportation systems.Many deficiencies on concrete noise barriers and metal noise barriers with rivet structure can be eliminated by a new kind of noise barrier with no-riveted structure.The mechanical performance examination and acoustic performance test are conducted on the new-designed noise barrier with no-riveted structure.The results indicate that the maximum stress is 1.74 MPa and the maximum deformation is 1.04 mm with load acting on the unit plate.The noise reduction coefficient of this kind of no-riveted noise barrier unit plate is 0.75 and its noise insulation is 40 dB,which were conform to or superior to the standard requirements.Therefore,this new designed noise barrier meets the field application requirements of mechanical and acoustic performance,which demonstrates the noise barriers can be widely promoted.展开更多
We exploit theoretically a class of rectangular cylindrical devices for noise shielding by using acoustic metamateriais. The function of noise shielding is justified by both the far-field and near-field full-wave simu...We exploit theoretically a class of rectangular cylindrical devices for noise shielding by using acoustic metamateriais. The function of noise shielding is justified by both the far-field and near-field full-wave simulations based on the finite element method. The enlargement of equivalent acoustic scattering cross sections is revealed to be the physical mechanism for this function. This work makes it possible to design a window with both noise shielding and air flow.展开更多
According to the test results of the physical and mechanical properties of similar materials in various quality mixture, a type of material with obvious tendency of rockburst was selected to produce a large-size model...According to the test results of the physical and mechanical properties of similar materials in various quality mixture, a type of material with obvious tendency of rockburst was selected to produce a large-size model to simulate rockburst phenomena in tunnels. The prototype model comes from a typical section of diversion tunnels in Jinping Hydropower Station in China. The simulation of excavating tunnels is carried out by opening a hole in the model after loading. The modeling results indicated that under the condition of normal stresses in the model boundaries the arch top, spandrel and side walls of the tunnel produced an obvious jump reaction of stress and strain and the acoustic emission counts of the surrounding rock also increased rapidly in a different time period after the "tunnel" excavation, showing the clear features of rockburst. The spalling, buckling and breaking occurred in the surrounding rock of model in conditions of over loading. It is concluded that the modeling tunnel segment in Jinping Hydropower Station is expected to form the tensile rockburst with the pattern of spalling, buckling and breaking.展开更多
A 64-year-old lady lying in supine position because multiple sclerosis, suffered a major stroke with no other plausible reasons but a hugc right-to-left shunt confirmed by transthoracic echocardiography as a patent fo...A 64-year-old lady lying in supine position because multiple sclerosis, suffered a major stroke with no other plausible reasons but a hugc right-to-left shunt confirmed by transthoracic echocardiography as a patent foramen ovale (PFO) with atrial septal aneurysm (ASA). Further examination with transesophageal echocardiography was not possible because of hostile esophageal tract. During rehabilitation exercise protocol in upright position, the patient developed severe dyspnoea and hypoxaemia. The patient was taken into the catheterization lab and a right heart catheterization with intracardiac echocardiography and eventual closure of the interatrial communication was planned.展开更多
Recently some modes of supersonic molecular beam injection (SMBI)have been put forward. Among them there are electrostatic “double layer”-shielding, simple collective and optimized numerical models to explain the ...Recently some modes of supersonic molecular beam injection (SMBI)have been put forward. Among them there are electrostatic “double layer”-shielding, simple collective and optimized numerical models to explain the experiment phenomenon. The penetrated depth A and particle deposition were calculated theoretically. About 1/7 in- cident thermal electron flux was amputated and, A increased seven times. The previous simulation is not enough for the SMBI fueling mechanism research. Hence, further investigations, both in experiment and in theory should be developed. The phenomena of line emission due to supersonic molecular beam (SMB) are of particular importance.展开更多
Focused ultrasound(FUS)-induced blood–brain barrier(BBB) opening is crucial for enhancing glioblastoma(GBM) therapies. However, an in vivo imaging approach with a high spatial–temporal resolution to monitor the BBB ...Focused ultrasound(FUS)-induced blood–brain barrier(BBB) opening is crucial for enhancing glioblastoma(GBM) therapies. However, an in vivo imaging approach with a high spatial–temporal resolution to monitor the BBB opening process in situ and synchronously is still lacking. Herein, we report the use of indocyanine green(ICG)-dopped microbubbles(MBs-ICG) for visualizing the FUS-induced BBB opening and enhancing the photothermal therapy(PTT) against GBM. The MBs-ICG show bright fluorescence in the second near-infrared window(NIR-II), ultrasound contrast, and ultrasound-induced size transformation properties. By virtue of complementary contrast properties, MBs-ICG can be successfully applied for cerebral vascular imaging with NIR-II fluorescence resolution of ~168.9 lm and ultrasound penetration depth of ~7 mm. We further demonstrate that MBs-ICG can be combined with FUS for in situ and synchronous visualization of the BBB opening with a NIR-II fluorescence signal-tobackground ratio of 6.2 ± 1.2. Finally, our data show that the MBs-ICG transform into lipid-ICG nanoparticles under FUS irradiation, which then rapidly penetrate the tumor tissues within 10 min and enhance PTT in orthotopic GBM-bearing mice. The multifunctional MBs-ICG approach provides a novel paradigm for monitoring BBB opening and enhancing GBM therapy.展开更多
Hypoxia severely impedes the therapeutic efficacies of tumor chemotherapy, radiotherapy and conventional photodynamic therapy(type Ⅱ PDT). Herein, we proposed a nonplanar near-infrared(NIR)-absorbing hyperthermia and...Hypoxia severely impedes the therapeutic efficacies of tumor chemotherapy, radiotherapy and conventional photodynamic therapy(type Ⅱ PDT). Herein, we proposed a nonplanar near-infrared(NIR)-absorbing hyperthermia and superoxide radical(O^(-)_(2)) photogenerator(TB) against hypoxic tumors. TB particularly possessed a favorable O^(-)_(2) generation capability under 808 nm laser irradiation with the donoracceptor-donor(D-A-D) molecular structure. Moreover, owing to molecular rotation, potent hyperthermia was realized under continuous laser irradiation. For the usage of hypoxic tumor treatment, TB was encapsulated by a block copolymer,poly(ethylene glycol)-b-poly(latic acid)(PEG_(45)-b-PLA_(24)), to fabricate phototheranostic nanoparticles(TB NPs). Due to the twisted molecular structure and the shielding effect of long alkyl chains, the π-π stacking-induced quenching of O^(-)_(2) could be reduced after the fabrication of nano-assemblies. Significantly, TB NPs exhibited satisfactory O^(-)_(2) generation for type I PDT and a simultaneously distinct photothermal conversion efficiency(PCE, 62%) for photothermal therapy(PTT)to combat hypoxic tumor cells. Moreover, the high PCE endowed TB NPs with high-performance photoacoustic(PA)and photothermal imaging capability. In vivo experiments demonstrated that TB NPs possessed an outstanding phototherapeutic efficacy for eradicating hypoxic tumors. This study established a novel approach for constructing oxygenindependent phototherapeutic reagent against hypoxic tumors.展开更多
基金supported by the National Natural Science Foundation of China (No. 51768014).
文摘The modern transportation system is increasingly developed during recent years.It is an effective solution to set the noise barriers to reduce the traffic noise pollution caused by different kinds of transportation systems.Many deficiencies on concrete noise barriers and metal noise barriers with rivet structure can be eliminated by a new kind of noise barrier with no-riveted structure.The mechanical performance examination and acoustic performance test are conducted on the new-designed noise barrier with no-riveted structure.The results indicate that the maximum stress is 1.74 MPa and the maximum deformation is 1.04 mm with load acting on the unit plate.The noise reduction coefficient of this kind of no-riveted noise barrier unit plate is 0.75 and its noise insulation is 40 dB,which were conform to or superior to the standard requirements.Therefore,this new designed noise barrier meets the field application requirements of mechanical and acoustic performance,which demonstrates the noise barriers can be widely promoted.
基金Support by the National Natural Science Foundation of China under Grant Nos. 10604014 and 10874025by Chinese National Key Basic Research Special Fund under Grant No. 2006CB921706
文摘We exploit theoretically a class of rectangular cylindrical devices for noise shielding by using acoustic metamateriais. The function of noise shielding is justified by both the far-field and near-field full-wave simulations based on the finite element method. The enlargement of equivalent acoustic scattering cross sections is revealed to be the physical mechanism for this function. This work makes it possible to design a window with both noise shielding and air flow.
基金supported by National Natural Science Fundation of China (Grant No. 40772176)Key Program for Research Group of SKLGP (Grant No. SKLGP2009Z002)Research Fund for the Doctoral Program of Higher Education of China(Grant No. 20105122110008)
文摘According to the test results of the physical and mechanical properties of similar materials in various quality mixture, a type of material with obvious tendency of rockburst was selected to produce a large-size model to simulate rockburst phenomena in tunnels. The prototype model comes from a typical section of diversion tunnels in Jinping Hydropower Station in China. The simulation of excavating tunnels is carried out by opening a hole in the model after loading. The modeling results indicated that under the condition of normal stresses in the model boundaries the arch top, spandrel and side walls of the tunnel produced an obvious jump reaction of stress and strain and the acoustic emission counts of the surrounding rock also increased rapidly in a different time period after the "tunnel" excavation, showing the clear features of rockburst. The spalling, buckling and breaking occurred in the surrounding rock of model in conditions of over loading. It is concluded that the modeling tunnel segment in Jinping Hydropower Station is expected to form the tensile rockburst with the pattern of spalling, buckling and breaking.
文摘A 64-year-old lady lying in supine position because multiple sclerosis, suffered a major stroke with no other plausible reasons but a hugc right-to-left shunt confirmed by transthoracic echocardiography as a patent foramen ovale (PFO) with atrial septal aneurysm (ASA). Further examination with transesophageal echocardiography was not possible because of hostile esophageal tract. During rehabilitation exercise protocol in upright position, the patient developed severe dyspnoea and hypoxaemia. The patient was taken into the catheterization lab and a right heart catheterization with intracardiac echocardiography and eventual closure of the interatrial communication was planned.
文摘Recently some modes of supersonic molecular beam injection (SMBI)have been put forward. Among them there are electrostatic “double layer”-shielding, simple collective and optimized numerical models to explain the experiment phenomenon. The penetrated depth A and particle deposition were calculated theoretically. About 1/7 in- cident thermal electron flux was amputated and, A increased seven times. The previous simulation is not enough for the SMBI fueling mechanism research. Hence, further investigations, both in experiment and in theory should be developed. The phenomena of line emission due to supersonic molecular beam (SMB) are of particular importance.
基金supported by the National Natural Science Foundation of China (92159304, 82171958, 81901812, 81971638, 91859117, 82027803, and 81927807)CAS Key Laboratory of Health Informatics (2011DP173015)+4 种基金the Science and Technology Key Project of Shenzhen(JCYJ20190812163614809, JCYJ20200109114612308, JCYJ2021032 4120011030, JCYJ20190809105207439, JCYJ20220531091408019, and JCYJ20200109114825064)Guangdong Basic and Applied Basic Research Fund (2020A1515110011, 2020A1515010395, and 2022A1515010384)Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province (2020B1212060051)the Key Technology and Equipment R&D Program of Major Science and Technology Infrastructure of Shenzhen (202100102, 202100104)Discipline Construction Project of Guangdong Medical University (4SG21017G)
文摘Focused ultrasound(FUS)-induced blood–brain barrier(BBB) opening is crucial for enhancing glioblastoma(GBM) therapies. However, an in vivo imaging approach with a high spatial–temporal resolution to monitor the BBB opening process in situ and synchronously is still lacking. Herein, we report the use of indocyanine green(ICG)-dopped microbubbles(MBs-ICG) for visualizing the FUS-induced BBB opening and enhancing the photothermal therapy(PTT) against GBM. The MBs-ICG show bright fluorescence in the second near-infrared window(NIR-II), ultrasound contrast, and ultrasound-induced size transformation properties. By virtue of complementary contrast properties, MBs-ICG can be successfully applied for cerebral vascular imaging with NIR-II fluorescence resolution of ~168.9 lm and ultrasound penetration depth of ~7 mm. We further demonstrate that MBs-ICG can be combined with FUS for in situ and synchronous visualization of the BBB opening with a NIR-II fluorescence signal-tobackground ratio of 6.2 ± 1.2. Finally, our data show that the MBs-ICG transform into lipid-ICG nanoparticles under FUS irradiation, which then rapidly penetrate the tumor tissues within 10 min and enhance PTT in orthotopic GBM-bearing mice. The multifunctional MBs-ICG approach provides a novel paradigm for monitoring BBB opening and enhancing GBM therapy.
基金supported by the National Natural Science Foundation of China (21875063 and 21871006)the Science and Technology Commission of Shanghai Municipality for Shanghai International Cooperation Program (19440710600)the Open Funding Project of the State Key Laboratory of Bioreactor Engineering。
文摘Hypoxia severely impedes the therapeutic efficacies of tumor chemotherapy, radiotherapy and conventional photodynamic therapy(type Ⅱ PDT). Herein, we proposed a nonplanar near-infrared(NIR)-absorbing hyperthermia and superoxide radical(O^(-)_(2)) photogenerator(TB) against hypoxic tumors. TB particularly possessed a favorable O^(-)_(2) generation capability under 808 nm laser irradiation with the donoracceptor-donor(D-A-D) molecular structure. Moreover, owing to molecular rotation, potent hyperthermia was realized under continuous laser irradiation. For the usage of hypoxic tumor treatment, TB was encapsulated by a block copolymer,poly(ethylene glycol)-b-poly(latic acid)(PEG_(45)-b-PLA_(24)), to fabricate phototheranostic nanoparticles(TB NPs). Due to the twisted molecular structure and the shielding effect of long alkyl chains, the π-π stacking-induced quenching of O^(-)_(2) could be reduced after the fabrication of nano-assemblies. Significantly, TB NPs exhibited satisfactory O^(-)_(2) generation for type I PDT and a simultaneously distinct photothermal conversion efficiency(PCE, 62%) for photothermal therapy(PTT)to combat hypoxic tumor cells. Moreover, the high PCE endowed TB NPs with high-performance photoacoustic(PA)and photothermal imaging capability. In vivo experiments demonstrated that TB NPs possessed an outstanding phototherapeutic efficacy for eradicating hypoxic tumors. This study established a novel approach for constructing oxygenindependent phototherapeutic reagent against hypoxic tumors.