采集心电、肌电和脑电等生理电信号时,总是存在工频干扰等环境噪声,且噪声的幅度通常远大于生理电信号本身的幅度,给信号的分析和处理带来了很大的困难。目前常用的方法是利用软件算法对采集到的信号进行滤波处理,这种方法虽然能在一定...采集心电、肌电和脑电等生理电信号时,总是存在工频干扰等环境噪声,且噪声的幅度通常远大于生理电信号本身的幅度,给信号的分析和处理带来了很大的困难。目前常用的方法是利用软件算法对采集到的信号进行滤波处理,这种方法虽然能在一定程度上降低工频干扰的影响,但同时会造成目标信号的衰减和畸变。针对此问题,文章设计了一种独特的硬件屏蔽驱动技术,实现在模拟前端最大限度地抑制原始信号中的工频干扰噪声。实验结果表明,生理电极引入屏蔽层驱动后,心电和肌电采集过程中的工频干扰可以得到明显的抑制;通过对屏蔽层接入不同的驱动信号的比较发现,利用各电极自身的信号对输入端进行屏蔽的效果最好,对工频干扰的抑制幅度高达35 d B。文章提出的屏蔽驱动硬件电路设计技术,可广泛用于各种生理电信号的采集,实现在源头上抑制工频干扰的影响,从而在根本上提高生理电信号的信噪比。展开更多
文摘采集心电、肌电和脑电等生理电信号时,总是存在工频干扰等环境噪声,且噪声的幅度通常远大于生理电信号本身的幅度,给信号的分析和处理带来了很大的困难。目前常用的方法是利用软件算法对采集到的信号进行滤波处理,这种方法虽然能在一定程度上降低工频干扰的影响,但同时会造成目标信号的衰减和畸变。针对此问题,文章设计了一种独特的硬件屏蔽驱动技术,实现在模拟前端最大限度地抑制原始信号中的工频干扰噪声。实验结果表明,生理电极引入屏蔽层驱动后,心电和肌电采集过程中的工频干扰可以得到明显的抑制;通过对屏蔽层接入不同的驱动信号的比较发现,利用各电极自身的信号对输入端进行屏蔽的效果最好,对工频干扰的抑制幅度高达35 d B。文章提出的屏蔽驱动硬件电路设计技术,可广泛用于各种生理电信号的采集,实现在源头上抑制工频干扰的影响,从而在根本上提高生理电信号的信噪比。