The microstructure,mechanical properties,and the effects of sliding distance and material removal mechanism on two-body abrasive wear behaviour of hypereutectic Al-Si-Si C composite and its matrix alloy were investiga...The microstructure,mechanical properties,and the effects of sliding distance and material removal mechanism on two-body abrasive wear behaviour of hypereutectic Al-Si-Si C composite and its matrix alloy were investigated.The hypereutectic Al-Si-Si C composite was prepared by stir casting route.The hardness,ultimate tensile strength and yield strength of the composite are increased by 17%,38%,and 30%respectively compared with those of the matrix alloy,while the elongation of the composite is decreased by 48%compared with that of the matrix alloy.The wear rate of the materials is increased with increasing the abrasive size and the applied load and does not vary with the sliding distance.The wear surfaces and wear debris of the materials were characterized by high-resolution field emission scanning electron microscopy(HR FESEM)and wear mechanism was analyzed for low and high load regimes.展开更多
Composites of montmorillonite clay and sawdust were prepared with the desired result being having new materials which burn longer than unmodified sawdust. The three forms of clay used for preparation of composites wer...Composites of montmorillonite clay and sawdust were prepared with the desired result being having new materials which burn longer than unmodified sawdust. The three forms of clay used for preparation of composites were unmodified montmorillonite, mono-ionic montmorillonite and organically modified montmorillonite. Montmorillonite clay was converted to mono-ionic clay by ion exchange with sodium using a sodium chloride solution. The mono-ionic clay was organically modified with an organic surfactant, methyl triphenyl phosphonium bromide. Nanocomposites were then prepared by combining the modified and raw forms of the clay with sawdust. The solution blending method was used to make the nanocomposites. The samples were analysed using thermogravimetric analysis and cone calorimetry. The studies showed that the nanocomposite which was made from sawdust and 1% organically modified clay had the most improved results in terms of burning time and thermal stability, as well as giving a calorific value closest to unmodified sawdust and the least amount of residue.展开更多
This paper mainly discussed the heat transmission rate and physical-mechanical properties of particleboard (PB) and middle density fiberboard (MDF) with different forming methods. In this experiment, both poplar and w...This paper mainly discussed the heat transmission rate and physical-mechanical properties of particleboard (PB) and middle density fiberboard (MDF) with different forming methods. In this experiment, both poplar and wheat-straw with different ratios and different shape forms were used as furnishes; UF and MDI were added to the poplar furnish and wheat-straw one, respectively. The experiment results showed that the layer-forming boards were superior to the mixture-forming boards. Under the given experimental conditions, the poplar to wheat straw ratio has no obvious influence on the mechanical properties, but has significant influence on the thickness swell (TS) of PB and MDF.展开更多
基金the financial support received to the first author as a scholarship from MHRD,Government of India.
文摘The microstructure,mechanical properties,and the effects of sliding distance and material removal mechanism on two-body abrasive wear behaviour of hypereutectic Al-Si-Si C composite and its matrix alloy were investigated.The hypereutectic Al-Si-Si C composite was prepared by stir casting route.The hardness,ultimate tensile strength and yield strength of the composite are increased by 17%,38%,and 30%respectively compared with those of the matrix alloy,while the elongation of the composite is decreased by 48%compared with that of the matrix alloy.The wear rate of the materials is increased with increasing the abrasive size and the applied load and does not vary with the sliding distance.The wear surfaces and wear debris of the materials were characterized by high-resolution field emission scanning electron microscopy(HR FESEM)and wear mechanism was analyzed for low and high load regimes.
文摘Composites of montmorillonite clay and sawdust were prepared with the desired result being having new materials which burn longer than unmodified sawdust. The three forms of clay used for preparation of composites were unmodified montmorillonite, mono-ionic montmorillonite and organically modified montmorillonite. Montmorillonite clay was converted to mono-ionic clay by ion exchange with sodium using a sodium chloride solution. The mono-ionic clay was organically modified with an organic surfactant, methyl triphenyl phosphonium bromide. Nanocomposites were then prepared by combining the modified and raw forms of the clay with sawdust. The solution blending method was used to make the nanocomposites. The samples were analysed using thermogravimetric analysis and cone calorimetry. The studies showed that the nanocomposite which was made from sawdust and 1% organically modified clay had the most improved results in terms of burning time and thermal stability, as well as giving a calorific value closest to unmodified sawdust and the least amount of residue.
文摘This paper mainly discussed the heat transmission rate and physical-mechanical properties of particleboard (PB) and middle density fiberboard (MDF) with different forming methods. In this experiment, both poplar and wheat-straw with different ratios and different shape forms were used as furnishes; UF and MDI were added to the poplar furnish and wheat-straw one, respectively. The experiment results showed that the layer-forming boards were superior to the mixture-forming boards. Under the given experimental conditions, the poplar to wheat straw ratio has no obvious influence on the mechanical properties, but has significant influence on the thickness swell (TS) of PB and MDF.