期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于图像钢球缺陷检测有效面积分析 被引量:2
1
作者 向敬忠 赵成岩 +6 位作者 赵彦玲 谭玉华 姜成浩 邓洁 张士横 胡冬冬 闫钊 《哈尔滨理工大学学报》 CAS 北大核心 2017年第1期65-69,共5页
基于图像检测钢球表面缺陷时有效面积选择不当严重影响检测精度和效率,首先对钢球表面检测最佳范围进行研究确定理想弧长;其次基于球带理论建立了有效面积与球带重叠关系模型,以此控制展开次数来降低重叠面积;最后利用有效弧长覆盖效率... 基于图像检测钢球表面缺陷时有效面积选择不当严重影响检测精度和效率,首先对钢球表面检测最佳范围进行研究确定理想弧长;其次基于球带理论建立了有效面积与球带重叠关系模型,以此控制展开次数来降低重叠面积;最后利用有效弧长覆盖效率公式来直观地控制弧长冗余量所带来的重叠面积,达到提高检测效率的目的,并为钢球直径系列化检测系统开发奠定了重要理论基础。 展开更多
关键词 理想弧长 球带理论 重叠面积 展开次数 覆盖效率
下载PDF
On the Second-order Item Coefficients for ε-starlike Mappings in C^n 被引量:1
2
作者 尹清杰 罗萍 《Chinese Quarterly Journal of Mathematics》 CSCD 2002年第4期78-82,共5页
Let B n be the unit ball in C n, we study ε-starlike mappings on B n. The upper bounds of second order item coefficients of homogeneous expansion for ε-starlike mappings are obtained.
关键词 starlike mappings homogeneous expansion
下载PDF
Bohr's Inequality on the Unit Ball B^n 被引量:2
3
作者 王建飞 刘太顺 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2007年第2期159-165,共7页
Bohr's type inequalities are studied in this paper: if f is a holomorphic mapping from the unit ball B^n to B^n, f(0)=p, then we have sum from k=0 to∞|Dφ_P(P)[D^kf(0)(z^k)]|/k!||Dφ_P(P)||<1 for|z|<max{1/2+|... Bohr's type inequalities are studied in this paper: if f is a holomorphic mapping from the unit ball B^n to B^n, f(0)=p, then we have sum from k=0 to∞|Dφ_P(P)[D^kf(0)(z^k)]|/k!||Dφ_P(P)||<1 for|z|<max{1/2+|P|,(1-|p|)/2^(1/2)andφ_P∈Aut(B^n) such thatφ_(p)=0. As corollaries of the above estimate, we obtain some sharp Bohr's type modulus inequalities. In particular, when n=1 and |P|→1, then our theorem reduces to a classical result of Bohr. 展开更多
关键词 Bohr's inequality holomorphic mapping homogeneous expansions
下载PDF
The Sharp Estimates of all Homogeneous Expansions for a Class of Quasi-convex Mappings on the Unit Polydisk in C^n 被引量:12
4
作者 Xiaosong LIU Taishun LIU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2011年第2期241-252,共12页
In this paper,the sharp estimates of all homogeneous expansions for f are established,where f(z) = (f1(z),f2(z),··· ,fn(z)) is a k-fold symmetric quasi-convex mapping defined on the unit polydisk in Cn ... In this paper,the sharp estimates of all homogeneous expansions for f are established,where f(z) = (f1(z),f2(z),··· ,fn(z)) is a k-fold symmetric quasi-convex mapping defined on the unit polydisk in Cn and Dtk+1fp(0)(ztk+1) (tk + 1)! = n l1,l2,···,ltk+1=1 |apl1l2···ltk+1|ei θpl1+θpl2+···+θpltk+1t k+1 zl1zl2 ··· zltk+1,p = 1,2,··· ,n.Here i = √?1,θplq ∈ (-π,π] (q = 1,2,··· ,tk + 1),l1,l2,··· ,ltk+1 = 1,2,··· ,n,t = 1,2,···.Moreover,as corollaries,the sharp upper bounds of growth theorem and distortion theorem for a k-fold symmetric quasi-convex mapping are established as well.These results show that in the case of quasi-convex mappings,Bieberbach conjecture in several complex variables is partly proved,and many known results are generalized. 展开更多
关键词 Estimates of all homogeneous expansions Quasi-convex mapping Quasi-convex mapping of type A Quasi-convex mapping of type B
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部