A new interpolation algorithm for Head-Related Transfer Function (HRTF) is proposed to realize 3D sound reproduction via headphones in arbitrary spatial direction. HRTFs are modeled as a weighted sum of spherical ha...A new interpolation algorithm for Head-Related Transfer Function (HRTF) is proposed to realize 3D sound reproduction via headphones in arbitrary spatial direction. HRTFs are modeled as a weighted sum of spherical harmonics on a spherical surface. Truncated Singular Value Decomposition (SVD) is adopted to calculate the weights of the model. The truncation number is chosen according to Frobenius norm ratio and the partial condition number. Compared with other interpolated methods, our proposed approach not only is continuous but exploits global information of available directions. The HRTF from any desired direction can be and interpolated results demonstrate that our obtained more accurately and robustly. Reconstructed proposed algorithm acquired better performance.展开更多
基金supported by the CNPC Basic Research Project for the 14th Five-Year Plan(No.2021DJ1803,2021DJ3502,2021DJ3503,2021DJ3605)CNPC Basic Research and Strategic Technical Research Project(No.2018D-500816)National Natural Science Foundation of China(No.41504110 and No.41874164)。
基金Supported by Shanghai Natural Science Foundation, Shanghai Leading Academic Discipline Project, and STCSM of China (No. 08ZR1408300, S30108, and 08DZ2231100)
文摘A new interpolation algorithm for Head-Related Transfer Function (HRTF) is proposed to realize 3D sound reproduction via headphones in arbitrary spatial direction. HRTFs are modeled as a weighted sum of spherical harmonics on a spherical surface. Truncated Singular Value Decomposition (SVD) is adopted to calculate the weights of the model. The truncation number is chosen according to Frobenius norm ratio and the partial condition number. Compared with other interpolated methods, our proposed approach not only is continuous but exploits global information of available directions. The HRTF from any desired direction can be and interpolated results demonstrate that our obtained more accurately and robustly. Reconstructed proposed algorithm acquired better performance.