The paper examines the dynamic stall characteristics of a finite wing with an aspect ratio of eight in order to explore the 3D effects on flow topology,aerodynamic characteristics,and pitching damping.Firstly,CFD meth...The paper examines the dynamic stall characteristics of a finite wing with an aspect ratio of eight in order to explore the 3D effects on flow topology,aerodynamic characteristics,and pitching damping.Firstly,CFD methods are developed to calculate the aerodynamic characteristics of wings.The URANS equations are solved using a finite volume method,and the two-equation k-ωshear stress transport(SST)turbulence model is employed to account for viscosity effects.Secondly,the CFD methods are used to simulate the aerodynamic characteristics of both a static,rectangular wing and a pitching,tapered wing to verify their effectiveness and accuracy.The numerical results show good agreement with experimental data.Subsequently,the static and dynamic characteristics of the finite wing are computed and discussed.The results reveal significant 3D flow structures during both static and dynamic stalls,including wing tip vortices,arch vortices,Ω-type vortices,and ring vortices.These phenomena lead to differences in the aerodynamic characteristics of the finite wing compared with a 2D airfoil.Specifically,the finite wing has a smaller lift slope during attached-flow stages,higher stall angles,and more gradual stall behavior.Flow separation initially occurs in the middle spanwise section and gradually spreads to both ends.Regarding aerodynamic damping,the inboard sections mainly generate unstable loading.Furthermore,sections experiencing light stall have a higher tendency to produce negative damping compared with sections experiencing deep dynamic stall.展开更多
To solve the extended fuzzy description logic with qualifying number restriction (EFALCQ) reasoning problems, EFALCQ is discretely simulated by description logic with qualifying number restriction (ALCQ), and ALCQ...To solve the extended fuzzy description logic with qualifying number restriction (EFALCQ) reasoning problems, EFALCQ is discretely simulated by description logic with qualifying number restriction (ALCQ), and ALCQ reasoning results are reused to prove the complexity of EFALCQ reasoning problems. The ALCQ simulation method for the consistency of EFALCQ is proposed. This method reduces EFALCQ satisfiability into EFALCQ consistency, and uses EFALCQ satisfiability to discretely simulate EFALCQ satdomain. It is proved that the reasoning complexity for EFALCQ satisfiability, consistency and sat-domain is PSPACE-complete.展开更多
Crack is found to be a major distress that affects the performance of the epoxy asphalt pavement.An extended finite element method was proposed for investigating the fracture properties of the epoxy asphalt mixture.Fi...Crack is found to be a major distress that affects the performance of the epoxy asphalt pavement.An extended finite element method was proposed for investigating the fracture properties of the epoxy asphalt mixture.Firstly,the single-edge notched beam test was used to analyze the temperature effect and calculate the material parameters.Then,the mechanical responses were studied using numerical analysis.It is concluded that 5℃ can be selected as the critical temperature that affects the fracture properties,and numerical simulations indicate that crack propagation is found to significantly affect the stress state of the epoxy asphalt mixture.The maximum principal stress at the crack surface exhibits different trends at various temperatures.Numerical solution of stress intensity factor can well meet the theoretical solution,especially when the temperature is lower than 5℃.展开更多
By considering the effect of hydraulic pressure filled in wing crack and the connected part of main crack on the stress intensity factor at wing crack tip, a new wing crack model exerted by hydraulic pressure and far ...By considering the effect of hydraulic pressure filled in wing crack and the connected part of main crack on the stress intensity factor at wing crack tip, a new wing crack model exerted by hydraulic pressure and far field stresses was proposed. By introducing the equivalent crack length lcq of wing crack, two terms make up the stress intensity factor K1 at wing crack tip: one is the component K(1) for a single isolated straight wing crack of length 2l subjected to hydraulic pressure in wing crack and far field stresses, and the other is the component K1^(2) due to the effective shear stress induced by the presence of the equivalent main crack. The FEM model of wing crack propagation subjected to hydraulic pressure and far field stresses was also established according to different side pressure coefficients and hydraulic pressures in crack. The result shows that a good agreement is found between theoretical model of wing crack proposed and finite element method (FEM). In theory, an unstable crack propagation is shown if there is high hydraulic pressure and lateral tension. The wing crack model proposed can provide references for studying on hydraulic fracturing in rock masses.展开更多
The characteristic properties of shell element with similar shapes are used to generate a so-called super element for the analysis of the crack problems for cylindrical pressure vessels. The formulation is processed b...The characteristic properties of shell element with similar shapes are used to generate a so-called super element for the analysis of the crack problems for cylindrical pressure vessels. The formulation is processed by matrix condensation without the involvement of special treatment. This method can deal with various singularity problems and it also presents excellent results to crack problems for cylindrical shell. Especially,the knowledge of the kind of singular order is not necessary in super element generation; it is very economical in terms of computer memory and programming. This method also exhibits versatility to solve the problem of kinked crack at cylindrical shell.展开更多
Blanking is a major process and has a wide range of usage in manufacturing industry. The general concept of blanking seems a simple one but governing parameters are many and have a complex relationship which directly ...Blanking is a major process and has a wide range of usage in manufacturing industry. The general concept of blanking seems a simple one but governing parameters are many and have a complex relationship which directly affect the quality of the produced parts (blanks) and also the energy efficiency of the process. The main problem is the lack of prediction capabilities of the effect of these parameters that lead to time, money and labor consuming trial and error procedures in experimental studies. Usage of FEM based programs to simulate blanking to obtain numerical results and observe the shearing mechanism is a cheap and a detailed way for industrial applications. In this study five different clearances (1%, 3%, 5%, 10% and 20%) and three different thicknesses (t = 2 mm, t = 3 mm and t = 4 mm) were used for simulation and experimental studies of the blanking process. Simulations were executed by using the FEM program, Deform 2-D. Investigations were made on the parameters related to crack progression like crack initiation and crack propagation angles, indentation angle, rollover angle and depth and also the related blanking energy values. The results of the present paper are in agreement with the results of experimental studies.展开更多
Fully automatic finite element(FE) modelling of the fracture process in quasi-brittle materials such as concrete and rocks and ductile materials such as metals and alloys,is of great significance in assessing structur...Fully automatic finite element(FE) modelling of the fracture process in quasi-brittle materials such as concrete and rocks and ductile materials such as metals and alloys,is of great significance in assessing structural integrity and presents tre-mendous challenges to the engineering community. One challenge lies in the adoption of an objective and effective crack propagation criterion. This paper proposes a crack propagation criterion based on the principle of energy conservation and the cohesive zone model(CZM) . The virtual crack extension technique is used to calculate the differential terms in the criterion. A fully-automatic discrete crack modelling methodology,integrating the developed criterion,the CZM to model the crack,a simple remeshing procedure to accommodate crack propagation,the J2 flow theory implemented within the incremental plasticity framework to model the ductile materials,and a local arc-length solver to the nonlinear equation system,is developed and im-plemented in an in-house program. Three examples,i.e.,a plain concrete beam with a single shear crack,a reinforced concrete(RC) beam with multiple cracks and a compact-tension steel specimen,are simulated. Good agreement between numerical predictions and experimental data is found,which demonstrates the applicability of the criterion to both quasi-brittle and ductile materials.展开更多
There is an obvious departure from the regional equi-librium of developments between the upper and lower reaches of the Pearl River in Guangdong, which resulted in "the effects of contra-geography-grads developme...There is an obvious departure from the regional equi-librium of developments between the upper and lower reaches of the Pearl River in Guangdong, which resulted in "the effects of contra-geography-grads development". It is mainly because the upriver mountainous areas have been deeply stuck in industriali-zation delay and marginalization plights, so that nearly 40 million local people have conceived a dream to get rid of "the vicious circle of poverty" by speeding up industrial development. But the problem is that such industrialization efforts on a large scale in mountainous areas are encountering the bottleneck of environ-mental capacity that strictly limits industrial emissions along the upper reaches of any water system. As a solution, an institutional arrangement called "the Local Area Quotas for Industrial Emis-sions along the Pearl River" is put forward supposed to give cor-responding compensation to the rights of industrial development yielded by some areas with lower environmental capacity through the distribution and trading of IDQs.展开更多
A new method of quantitative pre-corrosion damage of aviation aluminium(Al-Cu-Mg)alloy was proposed,whichregarded corrosion pits as equivalent semi-elliptical surface cracks.An analytical model was formulated to descr...A new method of quantitative pre-corrosion damage of aviation aluminium(Al-Cu-Mg)alloy was proposed,whichregarded corrosion pits as equivalent semi-elliptical surface cracks.An analytical model was formulated to describe the entire regionof fatigue crack propagation(FCP).The relationship between the model parameters and the fatigue testing data obtained in thepre-corroded experiments,crack propagation experiments and S-N fatigue experiments was discussed.The equivalent crack sizesand the FCP equation were used to calculate the fatigue life through numerical integration based on MATLAB/GUI.The resultsconfirm that the sigmoidal curve fitted by the FCP model expresses the whole change from Region I to Region III.In addition,thepredicted curves indicate the actual trend of fatigue life and the conservative result of fatigue limit.Thus,the new analytical methodcan estimate the residual life of pre-corroded Al-Cu-Mg alloy,especially smooth specimens.展开更多
Natural geological structures in rock(e.g.,joints,weakness planes,defects)play a vital role in the stability of tunnels and underground operations during construction.We investigated the failure characteristics of a d...Natural geological structures in rock(e.g.,joints,weakness planes,defects)play a vital role in the stability of tunnels and underground operations during construction.We investigated the failure characteristics of a deep circular tunnel in a rock mass with multiple weakness planes using a 2D combined finite element method/discrete element method(FEM/DEM).Conventional triaxial compression tests were performed on typical hard rock(marble)specimens under a range of confinement stress conditions to validate the rationale and accuracy of the proposed numerical approach.Parametric analysis was subsequently conducted to investigate the influence of inclination angle,and length on the crack propagation behavior,failure mode,energy evolution,and displacement distribution of the surrounding rock.The results show that the inclination angle strongly affects tunnel stability,and the failure intensity and damage range increase with increasing inclination angle and then decrease.The dynamic disasters are more likely with increasing weak plane length.Shearing and sliding along multiple weak planes are also consistently accompanied by kinetic energy fluctuations and surges after unloading,which implies a potentially violent dynamic response around a deeply-buried tunnel.Interactions between slabbing and shearing near the excavation boundaries are also discussed.The results presented here provide important insight into deep tunnel failure in hard rock influenced by both unloading disturbance and tectonic activation.展开更多
In spite of the good performance of the steel plate shear wall(SPSW)in recent earthquakes and experimental studies,the need for huge columns to surround the infill plate is a major shortcoming of the system.This short...In spite of the good performance of the steel plate shear wall(SPSW)in recent earthquakes and experimental studies,the need for huge columns to surround the infill plate is a major shortcoming of the system.This shortcoming can be resolved by using semi-supported SPSW.The semi-supported SPSW has secondary columns that prevent the transfer of stress from the infill plate to the main columns.In spite of extensive experimental and numerical investigations on SPSWs,there are many ambiguities regarding the behavior of the semi-supported SPSW.Although stress in the columns is reduced,incomplete diagonal tension field action is formed in the infill plate that creates new problems.In this paper,a new type of semi-supported SPSW is presented in which the steel plate and the secondary columns are angled.The creation of the angle of the plate and the secondary column makes it possible to use the full capacity of the steel plate as well as the capacity of the secondary columns.Numerical results showed that the wall with a 60°angle has a favorable performance relative to the semi-supported wall.Moreover,with the 60°angle,stiffness,strength and energy absorption is increased.The angle of the secondary columns has little effect on the non-elastic stiffness.Nevertheless,using a wall with an angle of more than 90°can neutralize the wall’s behavior relative to conventional walls.Therefore,the wall with a 60°angle as an optimal angle is recommended.展开更多
To investigate the differences and the development trends of the 400 kA aluminum reduction cell, four representative cells were deeply analyzed. By using numerical simulation methods in ANSYS software, the structure p...To investigate the differences and the development trends of the 400 kA aluminum reduction cell, four representative cells were deeply analyzed. By using numerical simulation methods in ANSYS software, the structure parameters were firstly compared, and then three-dimensional models of electric-magnetic-flow field were built and solved with finite element method(FEM). The comparison of the structures reveals that the cell bodies are similar while the current flow path and distribution ratio of bus bars are different. It appears that most of the current(70%-80%) in side A are used as the magnetic field compensation current and flow through two ends. The numerical simulation results indicate that the distributions of magnetic fields are different but all satisfy with the magnetohydrodynamics(MHD) stabilization, and the flow patterns are all two or multi vortexes with appropriate velocities. The comparison shows that all studied cells can satisfy with the physical field requirement, and the commercial applications also verify that the 400 kA cells have become the product of the mature and world's leading technology.展开更多
The buckling resisting brace(BRB)is an efficient system against lateral loads that enjoy high seismic energy absorption capacity.Although desirable behavior of BRBs has been confirmed,the stiffness of the system is no...The buckling resisting brace(BRB)is an efficient system against lateral loads that enjoy high seismic energy absorption capacity.Although desirable behavior of BRBs has been confirmed,the stiffness of the system is not desirable that it can be compensated by changing the configuration of BRB braces.In so doing,the configuration in the form of double K(DK)is investigated to achieve more favorable behavior.Also,the required mathematical formulas were proposed to design the system.Comparison of DK system with other conventional BRB showed that the DK system has a better structural performance and is more economical(due to needing less core area)than other conventional BRB.Numerical results indicated that the DK system increases the lateral ultimate strength,lateral nonlinear stiffness,and energy absorption.Besides,the DK configuration reduces the axial forces created in columns in the nonlinear zone.Reducing material demand,created forces in the main frame,and also increasing of nonlinear stiffens by DK improve the structure’s safety.展开更多
The carbon dioxide removal system is the most critical system for controlling CO2 mass concentration in long-term manned spacecraft.In order to ensure the controlling CO2 mass concentration in the cabin within the all...The carbon dioxide removal system is the most critical system for controlling CO2 mass concentration in long-term manned spacecraft.In order to ensure the controlling CO2 mass concentration in the cabin within the allowable range,the state of CO2 removal system needs to be estimated in real time.In this paper,the mathematical model is firstly established that describes the actual system conditions and then the Galerkin-based extended Kalman filter algorithm is proposed for the estimation of the state of CO2.This method transforms partial differential equation to ordinary differential equation by using Galerkin approaching method,and then carries out the state estimation by using extended Kalman filter.Simulation experiments were performed with the qualification of the actual manned space mission.The simulation results show that the proposed method can effectively estimate the system state while avoiding the problem of dimensional explosion,and has strong robustness regarding measurement noise.Thus,this method can establish a basis for system fault diagnosis and fault positioning.展开更多
The transmission shaft of the underground screw drill fractured when milling-shoe and grinding bridge plug was applied to the coiled tubes in a horizontal well of Sichuan province, but the position of this transmissio...The transmission shaft of the underground screw drill fractured when milling-shoe and grinding bridge plug was applied to the coiled tubes in a horizontal well of Sichuan province, but the position of this transmission shaft fracture did not occur at the minor-diameter retracting position and reducing position that were easy to fracture. An analysis of the transverse planes of the fracture found that the cause of the transmission shaft fracture surface was that the defects of the initial surface were propagating to cracks and gave rise to the fracture under torque load. To specifically know well the strength of the transmission shaft under damaging fracture, a statics analysis was conducted on the transmission shaft through ANSYS finite element simulation software, and the finite element models under no cracks, different-depth circumferential cracks, and similar situation of the transverse planes of fracture were established respectively. An analysis of the crack-free finite element model found that the fracture of the transmission shaft was really not caused by the self-structure of the transmission shaft; an analysis of circumferential crack finite element model found that strong stress concentration would appear in the tip of cracks, and the value of the stress would increase along with the increase of the circumferential crack depth, the stress of the entire crack top tended to fluctuate like waves, and also the strength of the transmission shaft was greatly impacted by the presence of cracks; an analysis of the similar crack finite element model found that stress concentration would appear in the tip of cracks, and the initial cracks always started to propagate from the tip of the external surface of the transmission shaft and would propagate inward until the propagating areas of two cracks overlapped, and finally reached the position of transient interruption, and then the transmission shaft fractured completely and the fracture strength was onlv 1/5 of that under no cracks.展开更多
基金supported by the National Natural Science Foundation of China(No.12072156)the National Key Laboratory Foundation of China(No.61422202103)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘The paper examines the dynamic stall characteristics of a finite wing with an aspect ratio of eight in order to explore the 3D effects on flow topology,aerodynamic characteristics,and pitching damping.Firstly,CFD methods are developed to calculate the aerodynamic characteristics of wings.The URANS equations are solved using a finite volume method,and the two-equation k-ωshear stress transport(SST)turbulence model is employed to account for viscosity effects.Secondly,the CFD methods are used to simulate the aerodynamic characteristics of both a static,rectangular wing and a pitching,tapered wing to verify their effectiveness and accuracy.The numerical results show good agreement with experimental data.Subsequently,the static and dynamic characteristics of the finite wing are computed and discussed.The results reveal significant 3D flow structures during both static and dynamic stalls,including wing tip vortices,arch vortices,Ω-type vortices,and ring vortices.These phenomena lead to differences in the aerodynamic characteristics of the finite wing compared with a 2D airfoil.Specifically,the finite wing has a smaller lift slope during attached-flow stages,higher stall angles,and more gradual stall behavior.Flow separation initially occurs in the middle spanwise section and gradually spreads to both ends.Regarding aerodynamic damping,the inboard sections mainly generate unstable loading.Furthermore,sections experiencing light stall have a higher tendency to produce negative damping compared with sections experiencing deep dynamic stall.
基金The National Natural Science Foundation of China(No60403016)the Weaponry Equipment Foundation of PLA Equip-ment Ministry (No51406020105JB8103)
文摘To solve the extended fuzzy description logic with qualifying number restriction (EFALCQ) reasoning problems, EFALCQ is discretely simulated by description logic with qualifying number restriction (ALCQ), and ALCQ reasoning results are reused to prove the complexity of EFALCQ reasoning problems. The ALCQ simulation method for the consistency of EFALCQ is proposed. This method reduces EFALCQ satisfiability into EFALCQ consistency, and uses EFALCQ satisfiability to discretely simulate EFALCQ satdomain. It is proved that the reasoning complexity for EFALCQ satisfiability, consistency and sat-domain is PSPACE-complete.
基金Project(50578038)supported by the National Natural Science Foundation of China
文摘Crack is found to be a major distress that affects the performance of the epoxy asphalt pavement.An extended finite element method was proposed for investigating the fracture properties of the epoxy asphalt mixture.Firstly,the single-edge notched beam test was used to analyze the temperature effect and calculate the material parameters.Then,the mechanical responses were studied using numerical analysis.It is concluded that 5℃ can be selected as the critical temperature that affects the fracture properties,and numerical simulations indicate that crack propagation is found to significantly affect the stress state of the epoxy asphalt mixture.The maximum principal stress at the crack surface exhibits different trends at various temperatures.Numerical solution of stress intensity factor can well meet the theoretical solution,especially when the temperature is lower than 5℃.
基金Projects(10972238,51074071,50974059)supported by the National Natural Science Foundation of ChinaProject(10JJ3007)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(11C0539)supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(200905)supported by Open Research Fund of Hunan Provincial Key of Safe Mining Techniques of Coal Mines,China
文摘By considering the effect of hydraulic pressure filled in wing crack and the connected part of main crack on the stress intensity factor at wing crack tip, a new wing crack model exerted by hydraulic pressure and far field stresses was proposed. By introducing the equivalent crack length lcq of wing crack, two terms make up the stress intensity factor K1 at wing crack tip: one is the component K(1) for a single isolated straight wing crack of length 2l subjected to hydraulic pressure in wing crack and far field stresses, and the other is the component K1^(2) due to the effective shear stress induced by the presence of the equivalent main crack. The FEM model of wing crack propagation subjected to hydraulic pressure and far field stresses was also established according to different side pressure coefficients and hydraulic pressures in crack. The result shows that a good agreement is found between theoretical model of wing crack proposed and finite element method (FEM). In theory, an unstable crack propagation is shown if there is high hydraulic pressure and lateral tension. The wing crack model proposed can provide references for studying on hydraulic fracturing in rock masses.
基金Project (No. NSC-95-2221-E-167-002) supported by the National Science Council of Taiwan, China
文摘The characteristic properties of shell element with similar shapes are used to generate a so-called super element for the analysis of the crack problems for cylindrical pressure vessels. The formulation is processed by matrix condensation without the involvement of special treatment. This method can deal with various singularity problems and it also presents excellent results to crack problems for cylindrical shell. Especially,the knowledge of the kind of singular order is not necessary in super element generation; it is very economical in terms of computer memory and programming. This method also exhibits versatility to solve the problem of kinked crack at cylindrical shell.
文摘Blanking is a major process and has a wide range of usage in manufacturing industry. The general concept of blanking seems a simple one but governing parameters are many and have a complex relationship which directly affect the quality of the produced parts (blanks) and also the energy efficiency of the process. The main problem is the lack of prediction capabilities of the effect of these parameters that lead to time, money and labor consuming trial and error procedures in experimental studies. Usage of FEM based programs to simulate blanking to obtain numerical results and observe the shearing mechanism is a cheap and a detailed way for industrial applications. In this study five different clearances (1%, 3%, 5%, 10% and 20%) and three different thicknesses (t = 2 mm, t = 3 mm and t = 4 mm) were used for simulation and experimental studies of the blanking process. Simulations were executed by using the FEM program, Deform 2-D. Investigations were made on the parameters related to crack progression like crack initiation and crack propagation angles, indentation angle, rollover angle and depth and also the related blanking energy values. The results of the present paper are in agreement with the results of experimental studies.
基金the Scientific Research Foundation for Re-turned Overseas Chinese Scholars, MOE (No. J20050924)the United Research Foundation of the National Natural Science Com-mittee and the Ertan Hydropower Development Co. Ltd., China (No. 50579081)
文摘Fully automatic finite element(FE) modelling of the fracture process in quasi-brittle materials such as concrete and rocks and ductile materials such as metals and alloys,is of great significance in assessing structural integrity and presents tre-mendous challenges to the engineering community. One challenge lies in the adoption of an objective and effective crack propagation criterion. This paper proposes a crack propagation criterion based on the principle of energy conservation and the cohesive zone model(CZM) . The virtual crack extension technique is used to calculate the differential terms in the criterion. A fully-automatic discrete crack modelling methodology,integrating the developed criterion,the CZM to model the crack,a simple remeshing procedure to accommodate crack propagation,the J2 flow theory implemented within the incremental plasticity framework to model the ductile materials,and a local arc-length solver to the nonlinear equation system,is developed and im-plemented in an in-house program. Three examples,i.e.,a plain concrete beam with a single shear crack,a reinforced concrete(RC) beam with multiple cracks and a compact-tension steel specimen,are simulated. Good agreement between numerical predictions and experimental data is found,which demonstrates the applicability of the criterion to both quasi-brittle and ductile materials.
文摘There is an obvious departure from the regional equi-librium of developments between the upper and lower reaches of the Pearl River in Guangdong, which resulted in "the effects of contra-geography-grads development". It is mainly because the upriver mountainous areas have been deeply stuck in industriali-zation delay and marginalization plights, so that nearly 40 million local people have conceived a dream to get rid of "the vicious circle of poverty" by speeding up industrial development. But the problem is that such industrialization efforts on a large scale in mountainous areas are encountering the bottleneck of environ-mental capacity that strictly limits industrial emissions along the upper reaches of any water system. As a solution, an institutional arrangement called "the Local Area Quotas for Industrial Emis-sions along the Pearl River" is put forward supposed to give cor-responding compensation to the rights of industrial development yielded by some areas with lower environmental capacity through the distribution and trading of IDQs.
基金Project(SHSYS2015002) supported by the Key Laboratory of Fundamental Science for National Defence of Aeronautical Digital Manufacturing Process,China
文摘A new method of quantitative pre-corrosion damage of aviation aluminium(Al-Cu-Mg)alloy was proposed,whichregarded corrosion pits as equivalent semi-elliptical surface cracks.An analytical model was formulated to describe the entire regionof fatigue crack propagation(FCP).The relationship between the model parameters and the fatigue testing data obtained in thepre-corroded experiments,crack propagation experiments and S-N fatigue experiments was discussed.The equivalent crack sizesand the FCP equation were used to calculate the fatigue life through numerical integration based on MATLAB/GUI.The resultsconfirm that the sigmoidal curve fitted by the FCP model expresses the whole change from Region I to Region III.In addition,thepredicted curves indicate the actual trend of fatigue life and the conservative result of fatigue limit.Thus,the new analytical methodcan estimate the residual life of pre-corroded Al-Cu-Mg alloy,especially smooth specimens.
基金Projects(52004143,51774194)supported by the National Natural Science Foundation of ChinaProject(2020M670781)supported by the China Postdoctoral Science Foundation+2 种基金Project(SKLGDUEK2021)supported by the State Key Laboratory for GeoMechanics and Deep Underground Engineering,ChinaProject(U1806208)supported by the NSFC-Shandong Joint Fund,ChinaProject(2018GSF117023)supported by the Key Research and Development Program of Shandong Province,China。
文摘Natural geological structures in rock(e.g.,joints,weakness planes,defects)play a vital role in the stability of tunnels and underground operations during construction.We investigated the failure characteristics of a deep circular tunnel in a rock mass with multiple weakness planes using a 2D combined finite element method/discrete element method(FEM/DEM).Conventional triaxial compression tests were performed on typical hard rock(marble)specimens under a range of confinement stress conditions to validate the rationale and accuracy of the proposed numerical approach.Parametric analysis was subsequently conducted to investigate the influence of inclination angle,and length on the crack propagation behavior,failure mode,energy evolution,and displacement distribution of the surrounding rock.The results show that the inclination angle strongly affects tunnel stability,and the failure intensity and damage range increase with increasing inclination angle and then decrease.The dynamic disasters are more likely with increasing weak plane length.Shearing and sliding along multiple weak planes are also consistently accompanied by kinetic energy fluctuations and surges after unloading,which implies a potentially violent dynamic response around a deeply-buried tunnel.Interactions between slabbing and shearing near the excavation boundaries are also discussed.The results presented here provide important insight into deep tunnel failure in hard rock influenced by both unloading disturbance and tectonic activation.
文摘In spite of the good performance of the steel plate shear wall(SPSW)in recent earthquakes and experimental studies,the need for huge columns to surround the infill plate is a major shortcoming of the system.This shortcoming can be resolved by using semi-supported SPSW.The semi-supported SPSW has secondary columns that prevent the transfer of stress from the infill plate to the main columns.In spite of extensive experimental and numerical investigations on SPSWs,there are many ambiguities regarding the behavior of the semi-supported SPSW.Although stress in the columns is reduced,incomplete diagonal tension field action is formed in the infill plate that creates new problems.In this paper,a new type of semi-supported SPSW is presented in which the steel plate and the secondary columns are angled.The creation of the angle of the plate and the secondary column makes it possible to use the full capacity of the steel plate as well as the capacity of the secondary columns.Numerical results showed that the wall with a 60°angle has a favorable performance relative to the semi-supported wall.Moreover,with the 60°angle,stiffness,strength and energy absorption is increased.The angle of the secondary columns has little effect on the non-elastic stiffness.Nevertheless,using a wall with an angle of more than 90°can neutralize the wall’s behavior relative to conventional walls.Therefore,the wall with a 60°angle as an optimal angle is recommended.
基金Projects(51104187,51274241,61321003) supported by the National Natural Science Foundation of ChinaProject(20100162120008) supported by Doctoral Fund of Ministry of Education of China
文摘To investigate the differences and the development trends of the 400 kA aluminum reduction cell, four representative cells were deeply analyzed. By using numerical simulation methods in ANSYS software, the structure parameters were firstly compared, and then three-dimensional models of electric-magnetic-flow field were built and solved with finite element method(FEM). The comparison of the structures reveals that the cell bodies are similar while the current flow path and distribution ratio of bus bars are different. It appears that most of the current(70%-80%) in side A are used as the magnetic field compensation current and flow through two ends. The numerical simulation results indicate that the distributions of magnetic fields are different but all satisfy with the magnetohydrodynamics(MHD) stabilization, and the flow patterns are all two or multi vortexes with appropriate velocities. The comparison shows that all studied cells can satisfy with the physical field requirement, and the commercial applications also verify that the 400 kA cells have become the product of the mature and world's leading technology.
文摘The buckling resisting brace(BRB)is an efficient system against lateral loads that enjoy high seismic energy absorption capacity.Although desirable behavior of BRBs has been confirmed,the stiffness of the system is not desirable that it can be compensated by changing the configuration of BRB braces.In so doing,the configuration in the form of double K(DK)is investigated to achieve more favorable behavior.Also,the required mathematical formulas were proposed to design the system.Comparison of DK system with other conventional BRB showed that the DK system has a better structural performance and is more economical(due to needing less core area)than other conventional BRB.Numerical results indicated that the DK system increases the lateral ultimate strength,lateral nonlinear stiffness,and energy absorption.Besides,the DK configuration reduces the axial forces created in columns in the nonlinear zone.Reducing material demand,created forces in the main frame,and also increasing of nonlinear stiffens by DK improve the structure’s safety.
基金Project(050403)supported by Pre-research Project in the Manned Space Filed of China。
文摘The carbon dioxide removal system is the most critical system for controlling CO2 mass concentration in long-term manned spacecraft.In order to ensure the controlling CO2 mass concentration in the cabin within the allowable range,the state of CO2 removal system needs to be estimated in real time.In this paper,the mathematical model is firstly established that describes the actual system conditions and then the Galerkin-based extended Kalman filter algorithm is proposed for the estimation of the state of CO2.This method transforms partial differential equation to ordinary differential equation by using Galerkin approaching method,and then carries out the state estimation by using extended Kalman filter.Simulation experiments were performed with the qualification of the actual manned space mission.The simulation results show that the proposed method can effectively estimate the system state while avoiding the problem of dimensional explosion,and has strong robustness regarding measurement noise.Thus,this method can establish a basis for system fault diagnosis and fault positioning.
文摘The transmission shaft of the underground screw drill fractured when milling-shoe and grinding bridge plug was applied to the coiled tubes in a horizontal well of Sichuan province, but the position of this transmission shaft fracture did not occur at the minor-diameter retracting position and reducing position that were easy to fracture. An analysis of the transverse planes of the fracture found that the cause of the transmission shaft fracture surface was that the defects of the initial surface were propagating to cracks and gave rise to the fracture under torque load. To specifically know well the strength of the transmission shaft under damaging fracture, a statics analysis was conducted on the transmission shaft through ANSYS finite element simulation software, and the finite element models under no cracks, different-depth circumferential cracks, and similar situation of the transverse planes of fracture were established respectively. An analysis of the crack-free finite element model found that the fracture of the transmission shaft was really not caused by the self-structure of the transmission shaft; an analysis of circumferential crack finite element model found that strong stress concentration would appear in the tip of cracks, and the value of the stress would increase along with the increase of the circumferential crack depth, the stress of the entire crack top tended to fluctuate like waves, and also the strength of the transmission shaft was greatly impacted by the presence of cracks; an analysis of the similar crack finite element model found that stress concentration would appear in the tip of cracks, and the initial cracks always started to propagate from the tip of the external surface of the transmission shaft and would propagate inward until the propagating areas of two cracks overlapped, and finally reached the position of transient interruption, and then the transmission shaft fractured completely and the fracture strength was onlv 1/5 of that under no cracks.