In order to improve the performance of the attribute reduction algorithm to deal with the noisy and uncertain large data, a novel co-evolutionary cloud-based attribute ensemble multi-agent reduction(CCAEMR) algorith...In order to improve the performance of the attribute reduction algorithm to deal with the noisy and uncertain large data, a novel co-evolutionary cloud-based attribute ensemble multi-agent reduction(CCAEMR) algorithm is proposed.First, a co-evolutionary cloud framework is designed under the M apReduce mechanism to divide the entire population into different co-evolutionary subpopulations with a self-adaptive scale. Meanwhile, these subpopulations will share their rewards to accelerate attribute reduction implementation.Secondly, a multi-agent ensemble strategy of co-evolutionary elitist optimization is constructed to ensure that subpopulations can exploit any correlation and interdependency between interacting attribute subsets with reinforcing noise tolerance.Hence, these agents are kept within the stable elitist region to achieve the optimal profit. The experimental results show that the proposed CCAEMR algorithm has better efficiency and feasibility to solve large-scale and uncertain dataset problems with complex noise.展开更多
Due to the fact that conventional heuristic attribute reduction algorithms are poor in running efficiency and difficult in accomplishing the co-evolutionary reduction mechanism in the decision table, an adaptive multi...Due to the fact that conventional heuristic attribute reduction algorithms are poor in running efficiency and difficult in accomplishing the co-evolutionary reduction mechanism in the decision table, an adaptive multicascade attribute reduction algorithm based on quantum-inspired mixed co-evolution is proposed. First, a novel and efficient self- adaptive quantum rotation angle strategy is designed to direct the participating populations to mutual adaptive evolution and to accelerate convergence speed. Then, a multicascade model of cooperative and competitive mixed co-evolution is adopted to decompose the evolutionary attribute species into subpopulations according to their historical performance records, which can increase the diversity of subpopulations and select some elitist individuals so as to strengthen the sharing ability of their searching experience. So the global optimization reduction set can be obtained quickly. The experimental results show that, compared with the existing algorithms, the proposed algorithm can achieve a higher performance for attribute reduction, and it can be considered as a more competitive heuristic algorithm on the efficiency and accuracy of minimum attribute reduction.展开更多
基金The National Natural Science Foundation of China(No.61300167)the Open Project Program of State Key Laboratory for Novel Software Technology of Nanjing University(No.KFKT2015B17)+3 种基金the Natural Science Foundation of Jiangsu Province(No.BK20151274)Qing Lan Project of Jiangsu Provincethe Open Project Program of Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education(No.JYB201606)the Program for Special Talent in Six Fields of Jiangsu Province(No.XYDXXJS-048)
文摘In order to improve the performance of the attribute reduction algorithm to deal with the noisy and uncertain large data, a novel co-evolutionary cloud-based attribute ensemble multi-agent reduction(CCAEMR) algorithm is proposed.First, a co-evolutionary cloud framework is designed under the M apReduce mechanism to divide the entire population into different co-evolutionary subpopulations with a self-adaptive scale. Meanwhile, these subpopulations will share their rewards to accelerate attribute reduction implementation.Secondly, a multi-agent ensemble strategy of co-evolutionary elitist optimization is constructed to ensure that subpopulations can exploit any correlation and interdependency between interacting attribute subsets with reinforcing noise tolerance.Hence, these agents are kept within the stable elitist region to achieve the optimal profit. The experimental results show that the proposed CCAEMR algorithm has better efficiency and feasibility to solve large-scale and uncertain dataset problems with complex noise.
基金The National Natural Science Foundation of China(No. 61139002,61171132)the Funding of Jiangsu Innovation Program for Graduate Education (No. CXZZ11_0219 )+2 种基金the Natural Science Foundation of Jiangsu Province (No. BK2010280)the Open Project of Jiangsu Provincial Key Laboratory of Computer Information Processing Technology (No. KJS1023)the Applying Study Foundation of Nantong(No. BK2011062)
文摘Due to the fact that conventional heuristic attribute reduction algorithms are poor in running efficiency and difficult in accomplishing the co-evolutionary reduction mechanism in the decision table, an adaptive multicascade attribute reduction algorithm based on quantum-inspired mixed co-evolution is proposed. First, a novel and efficient self- adaptive quantum rotation angle strategy is designed to direct the participating populations to mutual adaptive evolution and to accelerate convergence speed. Then, a multicascade model of cooperative and competitive mixed co-evolution is adopted to decompose the evolutionary attribute species into subpopulations according to their historical performance records, which can increase the diversity of subpopulations and select some elitist individuals so as to strengthen the sharing ability of their searching experience. So the global optimization reduction set can be obtained quickly. The experimental results show that, compared with the existing algorithms, the proposed algorithm can achieve a higher performance for attribute reduction, and it can be considered as a more competitive heuristic algorithm on the efficiency and accuracy of minimum attribute reduction.