期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
多分辨率模型生成中颜色和纹理属性的处理 被引量:2
1
作者 潘志庚 郑星 张明敏 《系统仿真学报》 CAS CSCD 2002年第11期1506-1508,1530,共4页
现有的图形处理系统难以对非常复杂的模型进行实时的存储、传输、显示等。一种有效的方法是根据要求生成一系列的多分辨率的简化模型。本文实现一种算法,不仅能进行几何简化,还能简化模型的表面属性,包括:颜色和纹理。本文对这个算法进... 现有的图形处理系统难以对非常复杂的模型进行实时的存储、传输、显示等。一种有效的方法是根据要求生成一系列的多分辨率的简化模型。本文实现一种算法,不仅能进行几何简化,还能简化模型的表面属性,包括:颜色和纹理。本文对这个算法进行了详细介绍,并用图例显示了各种属性简化的结果。该方法可用在虚拟现实、计算机辅助设计和科学可视化领域。 展开更多
关键词 多分辨率模型生成 颜色 纹理属性 图形处理系统 细节层次模型 表面属性简化 二次误差度量
下载PDF
基于Rough集联系度的决策表简化方法 被引量:2
2
作者 张平 黄德才 《浙江工业大学学报》 CAS 2002年第1期5-8,共4页
提出了集合型Rough集 (粗集 )联系度的概念以及利用Rough集联系度对决策表进行条件属性简化和属性冗余值简化的计算步骤 。
关键词 Rough集联系度 知识发现 决策表 条件属性简化 属性冗余值简化 粗集
下载PDF
知识表达系统的简化与集族的极小子集(Ⅱ)
3
作者 李小霞 陈绵云 《计算机科学》 CSCD 北大核心 2004年第2期9-10,25,共3页
论文定义知识表达系统的不可分辨矩阵,并且揭示如何通过不可分辨矩阵解决与知识表达系统三大属性简化相关的问题,包括判断一个属性是否在核中,判断一个对象是否在正区中,判断决策表是否协调,如何将知识表达系统属性简化、决策表条件属... 论文定义知识表达系统的不可分辨矩阵,并且揭示如何通过不可分辨矩阵解决与知识表达系统三大属性简化相关的问题,包括判断一个属性是否在核中,判断一个对象是否在正区中,判断决策表是否协调,如何将知识表达系统属性简化、决策表条件属性简化、协调决策表条件属性简化问题转化为生成集族的Ⅱ型极小子集问题。 展开更多
关键词 知识表达系统 集族 极小子集 属性简化 粗糙集理论
下载PDF
一种新的面向对象概念格属性约简方法 被引量:2
4
作者 万家良 《纺织高校基础科学学报》 CAS 2013年第3期355-358,共4页
为了研究概念格的属性约简方法,提出了面向对象概念格的可简化属性和不可简化属性,并研究相关性质.给出了面向对象概念格知识约简的判定定理,及相应的面向对象概念格约简方法.本文提出的属性约简方法,不用建立在差别矩阵上面,便可得到... 为了研究概念格的属性约简方法,提出了面向对象概念格的可简化属性和不可简化属性,并研究相关性质.给出了面向对象概念格知识约简的判定定理,及相应的面向对象概念格约简方法.本文提出的属性约简方法,不用建立在差别矩阵上面,便可得到形式背景的约简集. 展开更多
关键词 形式背景 面向对象概念格 简化属性 不可简化属性 属性约简 差别矩阵
下载PDF
Co-evolutionary cloud-based attribute ensemble multi-agent reduction algorithm
5
作者 丁卫平 王建东 +1 位作者 张晓峰 管致锦 《Journal of Southeast University(English Edition)》 EI CAS 2016年第4期432-438,共7页
In order to improve the performance of the attribute reduction algorithm to deal with the noisy and uncertain large data, a novel co-evolutionary cloud-based attribute ensemble multi-agent reduction(CCAEMR) algorith... In order to improve the performance of the attribute reduction algorithm to deal with the noisy and uncertain large data, a novel co-evolutionary cloud-based attribute ensemble multi-agent reduction(CCAEMR) algorithm is proposed.First, a co-evolutionary cloud framework is designed under the M apReduce mechanism to divide the entire population into different co-evolutionary subpopulations with a self-adaptive scale. Meanwhile, these subpopulations will share their rewards to accelerate attribute reduction implementation.Secondly, a multi-agent ensemble strategy of co-evolutionary elitist optimization is constructed to ensure that subpopulations can exploit any correlation and interdependency between interacting attribute subsets with reinforcing noise tolerance.Hence, these agents are kept within the stable elitist region to achieve the optimal profit. The experimental results show that the proposed CCAEMR algorithm has better efficiency and feasibility to solve large-scale and uncertain dataset problems with complex noise. 展开更多
关键词 co-evolutionary elitist optimization attribute reduction co-evolutionary cloud framework multi-agent ensemble strategy neonatal brain 3D-MRI
下载PDF
Adaptive multicascade attribute reduction based on quantum-inspired mixed co-evolution
6
作者 丁卫平 王建东 +1 位作者 施佺 管致锦 《Journal of Southeast University(English Edition)》 EI CAS 2012年第2期145-150,共6页
Due to the fact that conventional heuristic attribute reduction algorithms are poor in running efficiency and difficult in accomplishing the co-evolutionary reduction mechanism in the decision table, an adaptive multi... Due to the fact that conventional heuristic attribute reduction algorithms are poor in running efficiency and difficult in accomplishing the co-evolutionary reduction mechanism in the decision table, an adaptive multicascade attribute reduction algorithm based on quantum-inspired mixed co-evolution is proposed. First, a novel and efficient self- adaptive quantum rotation angle strategy is designed to direct the participating populations to mutual adaptive evolution and to accelerate convergence speed. Then, a multicascade model of cooperative and competitive mixed co-evolution is adopted to decompose the evolutionary attribute species into subpopulations according to their historical performance records, which can increase the diversity of subpopulations and select some elitist individuals so as to strengthen the sharing ability of their searching experience. So the global optimization reduction set can be obtained quickly. The experimental results show that, compared with the existing algorithms, the proposed algorithm can achieve a higher performance for attribute reduction, and it can be considered as a more competitive heuristic algorithm on the efficiency and accuracy of minimum attribute reduction. 展开更多
关键词 attribute reduction mixed co-evolution self- adaptive quantum rotation angle performance experience record elitist competition pool
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部