期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于核主成分分析的地震属性优化方法及应用 被引量:41
1
作者 印兴耀 孔国英 张广智 《石油地球物理勘探》 EI CSCD 北大核心 2008年第2期179-183,124-125+246,共8页
传统的基于线性变换的主成分分析法(PCA)是一种有效的地震属性降维优化方法。但是,当原始数据中存在非线性属性时,用主成分分析法提取的主成分就不能反映这种非线性属性。而核主成分分析(KPCA)则是一种基于原始数据的非线性变换,它可以... 传统的基于线性变换的主成分分析法(PCA)是一种有效的地震属性降维优化方法。但是,当原始数据中存在非线性属性时,用主成分分析法提取的主成分就不能反映这种非线性属性。而核主成分分析(KPCA)则是一种基于原始数据的非线性变换,它可以提取出数据之间的非线性关系。本文从方法原理概述入手,分析了一般主成分分析在处理非线性问题上存在的不足,阐述了基于核函数的主成分分析方法,并将其首次应用于地震属性的降维优化中。应用结果表明:基于核函数的主成分分析方法具有优秀的特征提取性能。 展开更多
关键词 属性降维优化 主成分分析(PCA) 核函数 核主成分分析(KPCA)
下载PDF
Locally linear embedding-based seismic attribute extraction and applications 被引量:5
2
作者 刘杏芳 郑晓东 +2 位作者 徐光成 王玲 杨昊 《Applied Geophysics》 SCIE CSCD 2010年第4期365-375,400,401,共13页
How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle co... How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle component analysis(PCA) is the most widely-used linear dimensionality reduction method at present.However,the relationships between seismic attributes and reservoir features are non-linear,so seismic attribute dimensionality reduction based on linear transforms can't solve non-linear problems well,reducing reservoir prediction precision.As a new non-linear learning method,manifold learning supplies a new method for seismic attribute analysis.It can discover the intrinsic features and rules hidden in the data by computing low-dimensional,neighborhood-preserving embeddings of high-dimensional inputs.In this paper,we try to extract seismic attributes using locally linear embedding(LLE),realizing inter-horizon attributes dimensionality reduction of 3D seismic data first and discuss the optimization of its key parameters.Combining model analysis and case studies,we compare the dimensionality reduction and clustering effects of LLE and PCA,both of which indicate that LLE can retain the intrinsic structure of the inputs.The composite attributes and clustering results based on LLE better characterize the distribution of sedimentary facies,reservoir,and even reservoir fluids. 展开更多
关键词 attribute optimization dimensionality reduction locally linear embedding(LLE) manifold learning principle component analysis(PCA)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部