The "4.20" Lushan earthquake in Sichuan province, China has induced a large amount of geological hazards and produced abundant loose materials which are prone to post-earthquake rainfall- triggered landslides. A det...The "4.20" Lushan earthquake in Sichuan province, China has induced a large amount of geological hazards and produced abundant loose materials which are prone to post-earthquake rainfall- triggered landslides. A detailed landslide inventory was acquired through post-earthquake emergent field investigation and high resolution remote sensing interpretation. The rainfall analysis was conducted using historical rainfall records during the period from 1951 to 2010. Results indicate that the average annual rainfall distribution is heterogeneous and the largest average annual rainfall occurs in Yucheng district. The Stability Index MAPping (SINMAP) model was adopted to assess and analyze the post- earthquake slope stability under different rainfall scenarios (light rainfall, moderate rainfall, heavy rainfall, and rainstorm). The model parameters were calibrated to reflect the significant influence of strong earthquakes on geological settings. The slope stability maps triggered by different rainfall scenarios were produced at a regional scale. The effect of different rainfall conditions on the slope stability is discussed. The expanding trend of the unstable area was quantitatively assessed with the different critical rainfall intensity. They provide a new insight into the spatial distribution and characteristics of post- earthquake rainfall-triggered landslides in the Lushan seismic area. An increase of rainfall intensity results in a significant increase heterogeneous distribution strongly correlated with of unstable area. The of slope instability is the distribution of earthquake intensity in spite of different rainfall conditions. The results suggest that the both seismic intensity and rainfall are two crucial factors for post- earthquake slope stability. This study provides important references for landslide prevention and mitigation in the Lushan area after earthquake.展开更多
Shallow slope failures induced by rainfall infiltration occur frequently, and the relevant triggering mechanisms have been widely studied.Rainfall-induced landslides are widely recognized to be caused by increases in ...Shallow slope failures induced by rainfall infiltration occur frequently, and the relevant triggering mechanisms have been widely studied.Rainfall-induced landslides are widely recognized to be caused by increases in soil weight, seepage force and pore water pressure or decreases in soil mechanical properties. However, even when all these factors are considered, some landslides still cannot be explained well. The increased pore water pressure in a slope reduces the effective stress of the soil and may trigger slope failure. Similarly, the pore gas pressure in a slope also reduces the effective stress of the soil but has been neglected in previous studies. As the viscosity of air is nearly negligible when compared with that of water, the pore gas pressure spreads faster, and its influence is wider, which is harmful for the stability of the slope. In this paper, the effects of pore gas pressure are considered in a shallow slope stability analysis, and a self-designed experiment is conducted to validate the force transfer mechanism.Numerical simulation results show that the pore gas pressure in the slope increases sharply at different locations under heavy rainfall conditions and that the pore gas pressure causes a rapid decrease in the slope safety factor. Laboratory experimental results show that the pore gas pressure throughout the whole unsaturated zone has the same value, which indicates that the gas pressure could spread quickly to the whole sample.展开更多
Tangjiashan landslide is a typical high-speed consequent landslide of medium-steep dip angle. This landslide triggered by earthquake took place in about semi-minute. The relative sliding displacement is 900 meters, so...Tangjiashan landslide is a typical high-speed consequent landslide of medium-steep dip angle. This landslide triggered by earthquake took place in about semi-minute. The relative sliding displacement is 900 meters, so average sliding speed is about 30 meters per second. The longitudinal length of barrier dam which is formed by high-speed landslide along river is 803.4 meters; and maximum width crossing river is 611.8 meters. And its volume is estimated about 20.37 million steres. Through detailed geological investigation of the barrier dam, together with early geological information before earthquake, geological structures of the barrier dam and its stability of upstream and downstream slopes are studied when water level reaches different elevations in condition of continual after shocks with seismic intensity of 7 or 8 Richter scale. On this basis, dam-breaking mode of barrier dam is discussed deeply. Thereby, analytic results provide significant guidance and advices to front headquarters of Tangjiashan barrier dam, so that some proper engineering measures can be implemented and flood discharge can be carried out well.展开更多
Microseismic monitoring technology has become an important technique to assess stability of rock mass in metal mines.Due to the special characteristics of underground metal mines in China,including the high tectonic s...Microseismic monitoring technology has become an important technique to assess stability of rock mass in metal mines.Due to the special characteristics of underground metal mines in China,including the high tectonic stress,irregular shape and existence of ore body,and complex mining methods,the application of microseismic technology is more diverse in China compared to other countries,and is more challenging than in other underground structures such as tunnels,hydropower stations and coal mines.Apart from assessing rock mass stability and ground pressure hazards induced by mining process,blasting,water inrush and large scale goaf,microseismic technology is also used to monitor illegal mining,and track personnel location during rescue work.Moreover,microseismic data have been used to optimize mining parameters in some metal mines.The technology is increasingly used to investigate cracking mechanism in the design of rock mass supports.In this paper,the application,research development and related achievements of microseismic technology in underground metal mines in China are summarized.By considering underground mines from the perspective of informatization,automation and intelligentization,future studies should focus on intelligent microseismic data processing method,e.g.,signal identification of microseismic and precise location algorithm,and on the research and development of microseismic equipment.In addition,integrated monitoring and collaborative analysis for rock mass response caused by mining disturbance will have good prospects for future development.展开更多
Numerous landslides occurred in hilly and mountainous areas during the 2004 Niigata-ken Chuetsu Earthquake. Social problems developed when many towns became isolated because landslides cut offtraffic and public servic...Numerous landslides occurred in hilly and mountainous areas during the 2004 Niigata-ken Chuetsu Earthquake. Social problems developed when many towns became isolated because landslides cut offtraffic and public service lifelines. The hilly areas are composed mainly alternate layer of soft sandstone and mudstone deposited in quaternary or tertiary period. This geomorphology formed by folding presents a prominent landslide area in this region. This area has been utilized as rice terraces or carp breeding ponds because of plenty of water in the ground all the time. In addition, there was rainfall of more than 100 mm caused by Typhoon No. 23 two days before the earthquake in Chuetsu area. Block samples were extracted from the failure sites. The samples obtained were mainly low-cemented sandy soils. Triaxial tests of the samples under saturated and unsaturated conditions were conducted to examine the soils' strength properties and estimate the indices for slope stability.展开更多
On the basis of geological investigating work and experimental studies on slide zone soil of one landslide in Tibet,the authors analyzed granulometric composition,clay mineral composition and physical and mechanical p...On the basis of geological investigating work and experimental studies on slide zone soil of one landslide in Tibet,the authors analyzed granulometric composition,clay mineral composition and physical and mechanical properties for the soil in the slide zone.The soil samples are gravel containing fine particle.Particles larger than 2 mm occupy the main proportion with the content 51.5%--68.5%.The relative content of clay minerals is low.The clay minerals are illite smectite mixed layer and kaolinite,and their relative contents are 6%--13% and 4%-11%,respectively.The main mineral ingredient is quartz and the relative content is over 30%.Therefore,the soil’s hydrophily is poor.The cohesion and internal friction angle are high,causing preferable physical-mechanical features of slide zone soil.On the basis of the obtained data,the landslide stability is evaluated by means of limit equilibrium method.The safety factors are 3.191 and 1.92 respectively under both natural and normal water level conditions.The study results show that the landslide is stable.It can provide the appropriate basis and reference for landslide stability evaluation and landslide control in Tibet.展开更多
基金supported by the Project of the 12th Five-year National Sci-Tech Support Plan of China (2011BAK12B09)the National Science Foundation of China (41072241)+1 种基金the One Hundred Talents Program of Chinese Academy of Sciences (A1055)the China Geological Survey Project (12120113038000)
文摘The "4.20" Lushan earthquake in Sichuan province, China has induced a large amount of geological hazards and produced abundant loose materials which are prone to post-earthquake rainfall- triggered landslides. A detailed landslide inventory was acquired through post-earthquake emergent field investigation and high resolution remote sensing interpretation. The rainfall analysis was conducted using historical rainfall records during the period from 1951 to 2010. Results indicate that the average annual rainfall distribution is heterogeneous and the largest average annual rainfall occurs in Yucheng district. The Stability Index MAPping (SINMAP) model was adopted to assess and analyze the post- earthquake slope stability under different rainfall scenarios (light rainfall, moderate rainfall, heavy rainfall, and rainstorm). The model parameters were calibrated to reflect the significant influence of strong earthquakes on geological settings. The slope stability maps triggered by different rainfall scenarios were produced at a regional scale. The effect of different rainfall conditions on the slope stability is discussed. The expanding trend of the unstable area was quantitatively assessed with the different critical rainfall intensity. They provide a new insight into the spatial distribution and characteristics of post- earthquake rainfall-triggered landslides in the Lushan seismic area. An increase of rainfall intensity results in a significant increase heterogeneous distribution strongly correlated with of unstable area. The of slope instability is the distribution of earthquake intensity in spite of different rainfall conditions. The results suggest that the both seismic intensity and rainfall are two crucial factors for post- earthquake slope stability. This study provides important references for landslide prevention and mitigation in the Lushan area after earthquake.
基金supported by National Key R&D Program of China (Grant No. 2017YFC1501100)the National Natural Science Foundation of China (Grant No. 51279090)Sponsored by Research Fund for Excellent Dissertation of China Three Gorges University
文摘Shallow slope failures induced by rainfall infiltration occur frequently, and the relevant triggering mechanisms have been widely studied.Rainfall-induced landslides are widely recognized to be caused by increases in soil weight, seepage force and pore water pressure or decreases in soil mechanical properties. However, even when all these factors are considered, some landslides still cannot be explained well. The increased pore water pressure in a slope reduces the effective stress of the soil and may trigger slope failure. Similarly, the pore gas pressure in a slope also reduces the effective stress of the soil but has been neglected in previous studies. As the viscosity of air is nearly negligible when compared with that of water, the pore gas pressure spreads faster, and its influence is wider, which is harmful for the stability of the slope. In this paper, the effects of pore gas pressure are considered in a shallow slope stability analysis, and a self-designed experiment is conducted to validate the force transfer mechanism.Numerical simulation results show that the pore gas pressure in the slope increases sharply at different locations under heavy rainfall conditions and that the pore gas pressure causes a rapid decrease in the slope safety factor. Laboratory experimental results show that the pore gas pressure throughout the whole unsaturated zone has the same value, which indicates that the gas pressure could spread quickly to the whole sample.
基金funding from the National Natural Science Foundation Project (Grant No. 40772175, 40972175)the Scientific research fund of Southwest Jiaotong University (Grant No.2008-A01)+1 种基金the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology) (Grant No. DZKJ–08012)the National Natural Science Foundation Project-mutual fund of Yunnan Province (Grant No.U1033601)
文摘Tangjiashan landslide is a typical high-speed consequent landslide of medium-steep dip angle. This landslide triggered by earthquake took place in about semi-minute. The relative sliding displacement is 900 meters, so average sliding speed is about 30 meters per second. The longitudinal length of barrier dam which is formed by high-speed landslide along river is 803.4 meters; and maximum width crossing river is 611.8 meters. And its volume is estimated about 20.37 million steres. Through detailed geological investigation of the barrier dam, together with early geological information before earthquake, geological structures of the barrier dam and its stability of upstream and downstream slopes are studied when water level reaches different elevations in condition of continual after shocks with seismic intensity of 7 or 8 Richter scale. On this basis, dam-breaking mode of barrier dam is discussed deeply. Thereby, analytic results provide significant guidance and advices to front headquarters of Tangjiashan barrier dam, so that some proper engineering measures can be implemented and flood discharge can be carried out well.
基金Projects(51974059,52174142)supported by the National Natural Science Foundation of ChinaProject(2017YFC0602904)supported by the National Key Research and Development Program of ChinaProject(N180115010)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Microseismic monitoring technology has become an important technique to assess stability of rock mass in metal mines.Due to the special characteristics of underground metal mines in China,including the high tectonic stress,irregular shape and existence of ore body,and complex mining methods,the application of microseismic technology is more diverse in China compared to other countries,and is more challenging than in other underground structures such as tunnels,hydropower stations and coal mines.Apart from assessing rock mass stability and ground pressure hazards induced by mining process,blasting,water inrush and large scale goaf,microseismic technology is also used to monitor illegal mining,and track personnel location during rescue work.Moreover,microseismic data have been used to optimize mining parameters in some metal mines.The technology is increasingly used to investigate cracking mechanism in the design of rock mass supports.In this paper,the application,research development and related achievements of microseismic technology in underground metal mines in China are summarized.By considering underground mines from the perspective of informatization,automation and intelligentization,future studies should focus on intelligent microseismic data processing method,e.g.,signal identification of microseismic and precise location algorithm,and on the research and development of microseismic equipment.In addition,integrated monitoring and collaborative analysis for rock mass response caused by mining disturbance will have good prospects for future development.
文摘Numerous landslides occurred in hilly and mountainous areas during the 2004 Niigata-ken Chuetsu Earthquake. Social problems developed when many towns became isolated because landslides cut offtraffic and public service lifelines. The hilly areas are composed mainly alternate layer of soft sandstone and mudstone deposited in quaternary or tertiary period. This geomorphology formed by folding presents a prominent landslide area in this region. This area has been utilized as rice terraces or carp breeding ponds because of plenty of water in the ground all the time. In addition, there was rainfall of more than 100 mm caused by Typhoon No. 23 two days before the earthquake in Chuetsu area. Block samples were extracted from the failure sites. The samples obtained were mainly low-cemented sandy soils. Triaxial tests of the samples under saturated and unsaturated conditions were conducted to examine the soils' strength properties and estimate the indices for slope stability.
基金Supported by the Science and Technology Development Planning Project of Jilin Province(No.201201057)
文摘On the basis of geological investigating work and experimental studies on slide zone soil of one landslide in Tibet,the authors analyzed granulometric composition,clay mineral composition and physical and mechanical properties for the soil in the slide zone.The soil samples are gravel containing fine particle.Particles larger than 2 mm occupy the main proportion with the content 51.5%--68.5%.The relative content of clay minerals is low.The clay minerals are illite smectite mixed layer and kaolinite,and their relative contents are 6%--13% and 4%-11%,respectively.The main mineral ingredient is quartz and the relative content is over 30%.Therefore,the soil’s hydrophily is poor.The cohesion and internal friction angle are high,causing preferable physical-mechanical features of slide zone soil.On the basis of the obtained data,the landslide stability is evaluated by means of limit equilibrium method.The safety factors are 3.191 and 1.92 respectively under both natural and normal water level conditions.The study results show that the landslide is stable.It can provide the appropriate basis and reference for landslide stability evaluation and landslide control in Tibet.