vegetation continuous The scale-location specific control on distribution was investigated through wavelet transforms approaches in subtropical mountain-hill region, Fujian, China. The Normalized Difference Vegetatio...vegetation continuous The scale-location specific control on distribution was investigated through wavelet transforms approaches in subtropical mountain-hill region, Fujian, China. The Normalized Difference Vegetation Index (NDVI) was calculated as an indicator of vegetation greenness using Chinese Environmental Disaster Reduction Satellite images along latitudinal and longitudinal transects. Four scales of variations were identified from the local wavelet spectrum of NDVI, with much stronger wavelet variances observed at larger scales. The characteristic scale of vegetation distribution within mountainous and hilly regions in Southeast China was around 20 km. Significantly strong wavelet coherency was generally examined in regions with very diverse topography, typically characterized as small mountains and hills fractured by rivers and residents. The continuous wavelet based approaches provided valuable insight on the hierarchical structure and its corresponding characteristic scales of ecosystems, which might be applied in defining proper levels in multilevel models and optimal bandwidths in Geographically Weighted Regression.展开更多
The study intended to describe the alpine vegetation of a protected area of the northwestern Himalaya and identify the important environmental variables responsible for species distribution.We placed random plots cove...The study intended to describe the alpine vegetation of a protected area of the northwestern Himalaya and identify the important environmental variables responsible for species distribution.We placed random plots covering different habitats and altitude to record species composition and environmental variables.Vegetation was classified using hierarchical cluster analysis and vegetation-environment relationships were evaluated with Canonical Correspondence Analysis.Four communities,each in alpine shrub and meadows were delineated and well justified in the ordination plots.Indicator species for the different communities were identified.Maximum species richness and diversity were found in community IV among shrub communities and community II among the meadows.Studied environmental variables explained 61.5% variation in shrub vegetation and 59.8% variation in meadows.Soil variables explained higher variability (~35%) than spatial variables (~21%) in both shrubs and meadows.Altitude,among the spatial variables and carbon/nitrogen ratio and nitrogen among the soil variables explained maximum variation.About 40% variations left unexplained.Latitude and species diversity among the other variables had significant correlation with ordination axes.Study showed that altitude and C/N ratio played a significant role in species composition.Extensive sampling efforts and inclusion of other non-studied variables are also suggested for better understanding.展开更多
This study examined the temporal variation of the Normalized Difference Vegetation Index (NDVI) and its relationship with climatic factors in the Changbai Mountain Natural Reserve (CMNR) during 2000 - 2009. The re...This study examined the temporal variation of the Normalized Difference Vegetation Index (NDVI) and its relationship with climatic factors in the Changbai Mountain Natural Reserve (CMNR) during 2000 - 2009. The results showed as follows. The average NDVI values increased at a rate of 0.0024 year-1. The increase rate differed with vegetation types, such as 0.0034 year-1 for forest and 0.0017 year-1 for tundra. Trend analyses revealed a consistent NDVI increase at the start and end of the growing season but little variation or decrease observed in July during the study period. The NDVI in CMNR showed a stronger correlation with temperature than with precipitation, especially in spring and autumn. A stronger correlation was observed between NDVI and temperature in the tundra zone (2,000-2,600m) than in the coniferous forest (1,100-1,700m) and Korean pine-broadleaved mixed forest (7oo-1,1oom) zones. The results indicate that vegetation at higher elevations is more sensitive to temperature change. NDVI variation had a strong correlation with temperature change (r=0.7311, p〈0.01) but less significant correlation with precipitation change. The result indicates that temperature can serve as a main indicator of vegetation sensitivity in the CMNR.展开更多
The objective of this study was to explore vegetation adaptability in a changing afro-alpine moorland terrestrial ecosystem on Mt. Rwenzori and to determine whether there were any links with response of vegetation to ...The objective of this study was to explore vegetation adaptability in a changing afro-alpine moorland terrestrial ecosystem on Mt. Rwenzori and to determine whether there were any links with response of vegetation to glacier recession. We analyzed the composition and distribution of plant species in relation to soils, geomorphic processes, and landscape positions in the Alpine zone. To accomplish this objective, archival data sources and published reports for this ecosystem were reviewed. A field trip was conducted in 2010 to study in detail seven vegetation sampling plots that were systematically selected using GIS maps and a nested-quadrat sampling design framework along an altitudinal gradient in the lower and upper alpine zones. Using these sampling plots, 105 vegetation and 13 soil samples were assessed in the alpine zone. Soil samples were taken for laboratory testing and analysis. The results show statistically significant differences in pH, OM, N, P, Ca, Mg, and K pools between soils samples drawn from the lower and upper alpine sites (p 〈 0.0033). Furthermore, we observed a significant vegetation formation with numerous structural forms, but there was a limited diversity of speeies. The most significant forms included Alchemilla carpets, Bogs, Dendrosenecio woodland, and Scree slopes. The lower alpine area (3500-3900 masl) had a more diverse plant species than other areas, especially Alchemilla argyrophylla and Dendrosenecio adnivalis species that were evident due to well-drained deeper soils. The Alchemilla subnivalis were evident at a higher altitude of above 4000 mask Shifts in the Astareeeae (e.g. Senecio species) were particularly prominent even on recently deglaciated areas. The spatial variations of species distribution, structure, and composition suggest there are serious implications in terms of ecosystem adaptability, resilience, and stability that require further evaluation.展开更多
The complex spatiotemporal vegetation variability in the subtropical mountain-hill region was investigated through a multi-level modeling framework. Three levels - parcel, landscape, and river basin levels- were selec...The complex spatiotemporal vegetation variability in the subtropical mountain-hill region was investigated through a multi-level modeling framework. Three levels - parcel, landscape, and river basin levels- were selected to discover the complex spatiotemporal vegetation variability induced by climatic, geomorphic and anthropogenic processes at different levels. The wavelet transform method was adopted to construct the annual maximum Enhanced Vegetation Index and the amplitude of the annual phenological cycle based on the 16-day time series of a5om Moderate Resolution Imaging Spectroradiometer Enhanced Vegetation Index datasets during 2OOl-2OlO. Results revealed that land use strongly influenced the overall vegetation greenness and magnitude of phenological cycles. Topographic variables also contributed considerably to the models, reflecting the positive influence from altitude and slope. Additionally, climate factors played an important role: precipitation had a considerable positive association with the vegetation greenness, whereas the temperature difference had strong positive influence on the magnitude of vegetation phenology. The multilevel approach leads to a better understanding of the complex interaction of the hierarchical ecosystem, human activities and climate change.展开更多
We developed a vegetation geo-climatic zonation incorporating the zonal concept, gradient and discriminant analysis in Wasatch Range, northern Utah, USA. Mountainous forest ecosystems were sampled and described by veg...We developed a vegetation geo-climatic zonation incorporating the zonal concept, gradient and discriminant analysis in Wasatch Range, northern Utah, USA. Mountainous forest ecosystems were sampled and described by vegetation, physiographic features and soil properties. The Snowpack Telemetry and National Weather Service Cooperative Observer Program weather station networks were used to approximate the climate of sample plots. We analysed vegetation and environmental data using clustering, ordination, classification, and ANOVA techniques to reveal environmental gradients affecting a broad vegetation pattern and discriminate these gradients. The specific objective was to assess and classify the response of the complex vegetation to those environmental factors operating at a coarse-scale climatic level. Ordination revealed the dominant role of regional, altitude-based climate in the area. Based on vegetation physiognomy, represented by five tree species, climatic data and taxonomic classification of zonal soils, we identified two vegetation geo-climatic zones:(1) a montane zone, with Rocky Mountain juniper and Douglas-fir; and(2) a subalpine zone, with Engelmann spruce and subalpine fir as climatic climax species. Aspen was excluded from the zonation due to its great ecological amplitude. We found significant differences between the zones in regional climate and landformgeomorphology/soils. Regional climate was represented by elevation, precipitation, and air and soil temperatures; and geomorphology by soil types. This coarse-scale vegetation geo-climatic zonation provides a framework for a comprehensive ecosystem survey, which is missing in the central Rocky Mountains of the United States. The vegetation-geoclimatic zonation represents a conceptual improvement on earlier classifications. This framework explicitly accounts for the influence of the physical environment on the distribution of vegetation within a complex landscape typical of the central Rocky Mountains and in mountain ranges elsewhere.展开更多
The Thornthwaite moisture index, an index of the supply of water (precipitation) in an area relative to the climatic demand for water (potential evapotranspiration), was used to examine the spatial and temporal va...The Thornthwaite moisture index, an index of the supply of water (precipitation) in an area relative to the climatic demand for water (potential evapotranspiration), was used to examine the spatial and temporal variation of drought and to verify the influence of environmental factors on the drought in the Hengduan Mountains, China. Results indicate that the Thornthwaite moisture index in the Hengduan Mountains had been increasing since 1960 with a rate of 0.1938/yr. Annual Thomthwaite moisture index in Hengduan Mountains was between -97.47 and 67.43 and the spatial heterogeneity was obvious in different seasons. Thomthwaite moisture index was high in the north and low in the south, and the monsoon rainfall had a significant impact on its spatial distribution. The tendency rate of Thomthwaite moisture index variation varied in different seasons, and the increasing trends in spring were greater than that in summer and autumn. However, the Thomthwaite moisture index decreased in winter. Thomthwaite moisture index increased greatly in the north and there was a small growth in the south of Hengduan Mountains. The increase of precipitation and decrease of evaporation lead to the increase of Thomthwaite moisture index. Thornthwaite moisture index has strong correlation with vegetation coverage. It can be seen that the correlation between Normalized Difference Vegetation Index (NDVI) and Thomthwaite moisture index was positive in spring and summer, but negative in autumn and winter. Correlation between Thornthwaite moisture index and relative soil relative moisture content was positive in spring, summer and autumn, but negative in winter. The typical mountainous terrain affect the distribu- tion of temperature, precipitation, wind speed and other meteorological factors in this region, and then affect the spatial distribution of Thomthwaite moisture index. The unique ridge-gorge terrain caused the continuity of water-heat distribution from the north to south, and the water-heat was stronger than that from the east to west part, and thus determined the spatial distribution of Thornthwaite mois- ture index. The drought in the Hengduan Mountains area is mainly due to the unstable South Asian monsoon rainfall time.展开更多
INTRODUCTION As a result of the massive construction following rapid economic growth in China, extraction of building materials from mountain resources has left behind many quarries. Those quarries usually have rocky ...INTRODUCTION As a result of the massive construction following rapid economic growth in China, extraction of building materials from mountain resources has left behind many quarries. Those quarries usually have rocky surfaces and steep slopes. The existence of rocky slopes is not only a safety hazard but also increases soil erosion and affects landscape aesthetics. Natural restoration of vegetation on rocky slope surfaces is a very slow process, which might require hundreds of years, and is not considered an acceptable restoration strategy (Cullen et al., 1998). Phytoremediation methods have been widely considered as a better option for vegetation establishment on rocky slope surfaces (Muzzi et al., 1997).展开更多
The high alpine and subalpine vegetation of Dinaric Alps is very diverse. These are conditional on genuine patterns of development of the geological substrate, climate, soil and terrain on the mountain world, which ar...The high alpine and subalpine vegetation of Dinaric Alps is very diverse. These are conditional on genuine patterns of development of the geological substrate, climate, soil and terrain on the mountain world, which are interconnected and spatially, and ecologically away. Also, today high mountain vegetation is extremely important indicator of global changes. In this area are many refugia of glacial biodiversity. Very illustrative example for understanding the specific forms of ecological diversity is high alpine vegetation in the area of the Balkan Peninsula. Vegetation of alpine belt of Western Balkans and Bosnia and Herzegovina is differed by extremely high level of biological and ecological diversity. Climatogenous vegetation are alpine and sub-alpine pastures above of timberline, then extra zonal forms of vegetation - glaciers, rock creeps, breaches of rocks, alpine springs, marsh, and tall greenery. This vegetation is dominant determinant of alpine ecosystems that creates their unique physiognomy and also enables prime production of biomass. It is different with extraordinary floral richness, especially in a number of endemic species and glacier relicts that are included in a large number of phytocoenoses, many of which are of endemic. In syntaxonomic sense, alpine vegetation is differentiated into lo classes: Elyno- Seslerietea, Juncetea trifidi, Salicetea herbaceae,Thalspietea rotundifolii, Asplenietea trichomanis, and Scheuchzerio-Caricetea fuscae, Montio- Cardaminetea, Loiseleurio-Vaccinietea, Mulgedio- Aconitetea and Molinio-Arrhenatheretea. These classes are differentiated into ao vegetation orders, 38 alliances and 19o associations and sub-associations. In total, that is 6o % of communities of total vegetation diversity of Bosnia and Herzegovina, and 12.5% of classes of highest syntaxonomic categories in vegetation diversity of Europe.展开更多
Using the Moderate Resolution Imaging Spectroradiometer-normalized difference vegetation index(NDVI) dataset,we investigated the patterns of spatiotemporal variation in vegetation coverage and its associated driving f...Using the Moderate Resolution Imaging Spectroradiometer-normalized difference vegetation index(NDVI) dataset,we investigated the patterns of spatiotemporal variation in vegetation coverage and its associated driving forces in the Qinling-Daba(Qinba) Mountains in 2000–2014.The Sen and Mann–Kendall models and partial correlation analysis were used to analyze the data,followed by calculation of the Hurst index to analyze future trends in vegetation coverage.The results of the study showed that(1) NDVI of the study area exhibited a significant increase in 2000–2014(linear tendency,2.8%/10a).During this period,a stable increase was detected before 2010(linear tendency,4.32%/10a),followed by a sharp decline after 2010(linear tendency,–6.59%/10a).(2) Spatially,vegetation cover showed a "high in the middle and a low in the surroundings" pattern.High values of vegetation coverage were mainly found in the Qinba Mountains of Shaanxi Province.(3) The area with improved vegetation coverage was larger than the degraded area,being 81.32% and 18.68%,respectively,during the study period.Piecewise analysis revealed that 71.61% of the total study area showed a decreasing trend in vegetation coverage in 2010–2014.(4) Reverse characteristics of vegetation coverage change were stronger than the same characteristics on the Qinba Mountains.About 46.89% of the entire study area is predicted to decrease in the future,while 34.44% of the total area will follow a continuously increasing trend.(5) The change of vegetation coverage was mainly attributed to the deficit in precipitation.Moreover,vegetation coverage during La Nina years was higher than that during El Nino years.(6) Human activities can induce ambiguous effects on vegetation coverage: both positive effects(through implementation of ecological restoration projects) and negative effects(through urbanization) were observed.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.41071267)Scientific Research Foundation for Returned Scholars,Ministry of Education of China(Grant No.[2012]940)the Science & Technology Department of Fujian Province,China(Grant Nos.2012I0005,2012J01167)
文摘vegetation continuous The scale-location specific control on distribution was investigated through wavelet transforms approaches in subtropical mountain-hill region, Fujian, China. The Normalized Difference Vegetation Index (NDVI) was calculated as an indicator of vegetation greenness using Chinese Environmental Disaster Reduction Satellite images along latitudinal and longitudinal transects. Four scales of variations were identified from the local wavelet spectrum of NDVI, with much stronger wavelet variances observed at larger scales. The characteristic scale of vegetation distribution within mountainous and hilly regions in Southeast China was around 20 km. Significantly strong wavelet coherency was generally examined in regions with very diverse topography, typically characterized as small mountains and hills fractured by rivers and residents. The continuous wavelet based approaches provided valuable insight on the hierarchical structure and its corresponding characteristic scales of ecosystems, which might be applied in defining proper levels in multilevel models and optimal bandwidths in Geographically Weighted Regression.
文摘The study intended to describe the alpine vegetation of a protected area of the northwestern Himalaya and identify the important environmental variables responsible for species distribution.We placed random plots covering different habitats and altitude to record species composition and environmental variables.Vegetation was classified using hierarchical cluster analysis and vegetation-environment relationships were evaluated with Canonical Correspondence Analysis.Four communities,each in alpine shrub and meadows were delineated and well justified in the ordination plots.Indicator species for the different communities were identified.Maximum species richness and diversity were found in community IV among shrub communities and community II among the meadows.Studied environmental variables explained 61.5% variation in shrub vegetation and 59.8% variation in meadows.Soil variables explained higher variability (~35%) than spatial variables (~21%) in both shrubs and meadows.Altitude,among the spatial variables and carbon/nitrogen ratio and nitrogen among the soil variables explained maximum variation.About 40% variations left unexplained.Latitude and species diversity among the other variables had significant correlation with ordination axes.Study showed that altitude and C/N ratio played a significant role in species composition.Extensive sampling efforts and inclusion of other non-studied variables are also suggested for better understanding.
基金supported by the Science and Technology Innovation Platforms Initiative of Northeast Normal University under the project "Ecological Security and Data Assemblage of the Changbai Mountains International Georegion(Project No.106111065202)"the National Grand Fundamental Research 973 Program of China (Project No.2009CB426305)
文摘This study examined the temporal variation of the Normalized Difference Vegetation Index (NDVI) and its relationship with climatic factors in the Changbai Mountain Natural Reserve (CMNR) during 2000 - 2009. The results showed as follows. The average NDVI values increased at a rate of 0.0024 year-1. The increase rate differed with vegetation types, such as 0.0034 year-1 for forest and 0.0017 year-1 for tundra. Trend analyses revealed a consistent NDVI increase at the start and end of the growing season but little variation or decrease observed in July during the study period. The NDVI in CMNR showed a stronger correlation with temperature than with precipitation, especially in spring and autumn. A stronger correlation was observed between NDVI and temperature in the tundra zone (2,000-2,600m) than in the coniferous forest (1,100-1,700m) and Korean pine-broadleaved mixed forest (7oo-1,1oom) zones. The results indicate that vegetation at higher elevations is more sensitive to temperature change. NDVI variation had a strong correlation with temperature change (r=0.7311, p〈0.01) but less significant correlation with precipitation change. The result indicates that temperature can serve as a main indicator of vegetation sensitivity in the CMNR.
基金financial support from START International for funding the project activities(Makerere University and University of Tennessee at Memphis) provided us with the necessary support
文摘The objective of this study was to explore vegetation adaptability in a changing afro-alpine moorland terrestrial ecosystem on Mt. Rwenzori and to determine whether there were any links with response of vegetation to glacier recession. We analyzed the composition and distribution of plant species in relation to soils, geomorphic processes, and landscape positions in the Alpine zone. To accomplish this objective, archival data sources and published reports for this ecosystem were reviewed. A field trip was conducted in 2010 to study in detail seven vegetation sampling plots that were systematically selected using GIS maps and a nested-quadrat sampling design framework along an altitudinal gradient in the lower and upper alpine zones. Using these sampling plots, 105 vegetation and 13 soil samples were assessed in the alpine zone. Soil samples were taken for laboratory testing and analysis. The results show statistically significant differences in pH, OM, N, P, Ca, Mg, and K pools between soils samples drawn from the lower and upper alpine sites (p 〈 0.0033). Furthermore, we observed a significant vegetation formation with numerous structural forms, but there was a limited diversity of speeies. The most significant forms included Alchemilla carpets, Bogs, Dendrosenecio woodland, and Scree slopes. The lower alpine area (3500-3900 masl) had a more diverse plant species than other areas, especially Alchemilla argyrophylla and Dendrosenecio adnivalis species that were evident due to well-drained deeper soils. The Alchemilla subnivalis were evident at a higher altitude of above 4000 mask Shifts in the Astareeeae (e.g. Senecio species) were particularly prominent even on recently deglaciated areas. The spatial variations of species distribution, structure, and composition suggest there are serious implications in terms of ecosystem adaptability, resilience, and stability that require further evaluation.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant No. 41071267)Scientific Research Foundation for Returned Scholars ([2012]940)Ministry of Education of China, and the Science Foundation of Fujian Province (Grant Nos. 2012I0005, 2012J01167)
文摘The complex spatiotemporal vegetation variability in the subtropical mountain-hill region was investigated through a multi-level modeling framework. Three levels - parcel, landscape, and river basin levels- were selected to discover the complex spatiotemporal vegetation variability induced by climatic, geomorphic and anthropogenic processes at different levels. The wavelet transform method was adopted to construct the annual maximum Enhanced Vegetation Index and the amplitude of the annual phenological cycle based on the 16-day time series of a5om Moderate Resolution Imaging Spectroradiometer Enhanced Vegetation Index datasets during 2OOl-2OlO. Results revealed that land use strongly influenced the overall vegetation greenness and magnitude of phenological cycles. Topographic variables also contributed considerably to the models, reflecting the positive influence from altitude and slope. Additionally, climate factors played an important role: precipitation had a considerable positive association with the vegetation greenness, whereas the temperature difference had strong positive influence on the magnitude of vegetation phenology. The multilevel approach leads to a better understanding of the complex interaction of the hierarchical ecosystem, human activities and climate change.
基金supported in part by the Ecology Center, United States Department of Agriculture (USDA) Forest Service, Wasatch-Cache National Forest, Forest Supervisor’s Office, and the Utah Agricultural Experiment Station, Utah State University,USA and approved as journal paper no. 8235
文摘We developed a vegetation geo-climatic zonation incorporating the zonal concept, gradient and discriminant analysis in Wasatch Range, northern Utah, USA. Mountainous forest ecosystems were sampled and described by vegetation, physiographic features and soil properties. The Snowpack Telemetry and National Weather Service Cooperative Observer Program weather station networks were used to approximate the climate of sample plots. We analysed vegetation and environmental data using clustering, ordination, classification, and ANOVA techniques to reveal environmental gradients affecting a broad vegetation pattern and discriminate these gradients. The specific objective was to assess and classify the response of the complex vegetation to those environmental factors operating at a coarse-scale climatic level. Ordination revealed the dominant role of regional, altitude-based climate in the area. Based on vegetation physiognomy, represented by five tree species, climatic data and taxonomic classification of zonal soils, we identified two vegetation geo-climatic zones:(1) a montane zone, with Rocky Mountain juniper and Douglas-fir; and(2) a subalpine zone, with Engelmann spruce and subalpine fir as climatic climax species. Aspen was excluded from the zonation due to its great ecological amplitude. We found significant differences between the zones in regional climate and landformgeomorphology/soils. Regional climate was represented by elevation, precipitation, and air and soil temperatures; and geomorphology by soil types. This coarse-scale vegetation geo-climatic zonation provides a framework for a comprehensive ecosystem survey, which is missing in the central Rocky Mountains of the United States. The vegetation-geoclimatic zonation represents a conceptual improvement on earlier classifications. This framework explicitly accounts for the influence of the physical environment on the distribution of vegetation within a complex landscape typical of the central Rocky Mountains and in mountain ranges elsewhere.
基金Under the auspices of Chinese Postdoctoral Science Foundation(No.2015M570864)Open-ended Fund of State Key Laboratory of Cryosphere Sciences,Chinese Academy of Sciences(No.SKLCS-OP-2014-11)+2 种基金Northwest Normal University Young Teachers Scientific Research Ability Promotion Plan(No.NWNU-LKQN-13-10)National Natural Science Foundation of China(No.41273010,41271133)Major National Research Projects of China(No.2013CBA01808)
文摘The Thornthwaite moisture index, an index of the supply of water (precipitation) in an area relative to the climatic demand for water (potential evapotranspiration), was used to examine the spatial and temporal variation of drought and to verify the influence of environmental factors on the drought in the Hengduan Mountains, China. Results indicate that the Thornthwaite moisture index in the Hengduan Mountains had been increasing since 1960 with a rate of 0.1938/yr. Annual Thomthwaite moisture index in Hengduan Mountains was between -97.47 and 67.43 and the spatial heterogeneity was obvious in different seasons. Thomthwaite moisture index was high in the north and low in the south, and the monsoon rainfall had a significant impact on its spatial distribution. The tendency rate of Thomthwaite moisture index variation varied in different seasons, and the increasing trends in spring were greater than that in summer and autumn. However, the Thomthwaite moisture index decreased in winter. Thomthwaite moisture index increased greatly in the north and there was a small growth in the south of Hengduan Mountains. The increase of precipitation and decrease of evaporation lead to the increase of Thomthwaite moisture index. Thornthwaite moisture index has strong correlation with vegetation coverage. It can be seen that the correlation between Normalized Difference Vegetation Index (NDVI) and Thomthwaite moisture index was positive in spring and summer, but negative in autumn and winter. Correlation between Thornthwaite moisture index and relative soil relative moisture content was positive in spring, summer and autumn, but negative in winter. The typical mountainous terrain affect the distribu- tion of temperature, precipitation, wind speed and other meteorological factors in this region, and then affect the spatial distribution of Thomthwaite moisture index. The unique ridge-gorge terrain caused the continuity of water-heat distribution from the north to south, and the water-heat was stronger than that from the east to west part, and thus determined the spatial distribution of Thornthwaite mois- ture index. The drought in the Hengduan Mountains area is mainly due to the unstable South Asian monsoon rainfall time.
基金Project supported by the National Natural Science Foundation of China (No.30871595)the Science and Technology Cooperation Project of Ningbo, China (No.2005C100041)
文摘INTRODUCTION As a result of the massive construction following rapid economic growth in China, extraction of building materials from mountain resources has left behind many quarries. Those quarries usually have rocky surfaces and steep slopes. The existence of rocky slopes is not only a safety hazard but also increases soil erosion and affects landscape aesthetics. Natural restoration of vegetation on rocky slope surfaces is a very slow process, which might require hundreds of years, and is not considered an acceptable restoration strategy (Cullen et al., 1998). Phytoremediation methods have been widely considered as a better option for vegetation establishment on rocky slope surfaces (Muzzi et al., 1997).
基金the part of Project Obrasci ekoloko-sintaksonomskog diverziteta u procjeni stanja i nosivog kapaciteta ekosistema zivotne sredine.(The patterns of ecological-syntaxo-nomical diversity in assessment of state and carrying capacity of environment - Kanton Sarajevo,Federacija BiH,Bosna i Hercegovina,2007-09)
文摘The high alpine and subalpine vegetation of Dinaric Alps is very diverse. These are conditional on genuine patterns of development of the geological substrate, climate, soil and terrain on the mountain world, which are interconnected and spatially, and ecologically away. Also, today high mountain vegetation is extremely important indicator of global changes. In this area are many refugia of glacial biodiversity. Very illustrative example for understanding the specific forms of ecological diversity is high alpine vegetation in the area of the Balkan Peninsula. Vegetation of alpine belt of Western Balkans and Bosnia and Herzegovina is differed by extremely high level of biological and ecological diversity. Climatogenous vegetation are alpine and sub-alpine pastures above of timberline, then extra zonal forms of vegetation - glaciers, rock creeps, breaches of rocks, alpine springs, marsh, and tall greenery. This vegetation is dominant determinant of alpine ecosystems that creates their unique physiognomy and also enables prime production of biomass. It is different with extraordinary floral richness, especially in a number of endemic species and glacier relicts that are included in a large number of phytocoenoses, many of which are of endemic. In syntaxonomic sense, alpine vegetation is differentiated into lo classes: Elyno- Seslerietea, Juncetea trifidi, Salicetea herbaceae,Thalspietea rotundifolii, Asplenietea trichomanis, and Scheuchzerio-Caricetea fuscae, Montio- Cardaminetea, Loiseleurio-Vaccinietea, Mulgedio- Aconitetea and Molinio-Arrhenatheretea. These classes are differentiated into ao vegetation orders, 38 alliances and 19o associations and sub-associations. In total, that is 6o % of communities of total vegetation diversity of Bosnia and Herzegovina, and 12.5% of classes of highest syntaxonomic categories in vegetation diversity of Europe.
基金Major Project of High-resolution Earth Observation SystemBeijing Natural Science Foundation,No.8144052
文摘Using the Moderate Resolution Imaging Spectroradiometer-normalized difference vegetation index(NDVI) dataset,we investigated the patterns of spatiotemporal variation in vegetation coverage and its associated driving forces in the Qinling-Daba(Qinba) Mountains in 2000–2014.The Sen and Mann–Kendall models and partial correlation analysis were used to analyze the data,followed by calculation of the Hurst index to analyze future trends in vegetation coverage.The results of the study showed that(1) NDVI of the study area exhibited a significant increase in 2000–2014(linear tendency,2.8%/10a).During this period,a stable increase was detected before 2010(linear tendency,4.32%/10a),followed by a sharp decline after 2010(linear tendency,–6.59%/10a).(2) Spatially,vegetation cover showed a "high in the middle and a low in the surroundings" pattern.High values of vegetation coverage were mainly found in the Qinba Mountains of Shaanxi Province.(3) The area with improved vegetation coverage was larger than the degraded area,being 81.32% and 18.68%,respectively,during the study period.Piecewise analysis revealed that 71.61% of the total study area showed a decreasing trend in vegetation coverage in 2010–2014.(4) Reverse characteristics of vegetation coverage change were stronger than the same characteristics on the Qinba Mountains.About 46.89% of the entire study area is predicted to decrease in the future,while 34.44% of the total area will follow a continuously increasing trend.(5) The change of vegetation coverage was mainly attributed to the deficit in precipitation.Moreover,vegetation coverage during La Nina years was higher than that during El Nino years.(6) Human activities can induce ambiguous effects on vegetation coverage: both positive effects(through implementation of ecological restoration projects) and negative effects(through urbanization) were observed.