Changes of air temperatures and atmosphere circulation at three high mountainous stations in Bulgaria are investigated for the period of 1941-2008.The three stations are located on peaks Musala,Cherni vrah and Botev,w...Changes of air temperatures and atmosphere circulation at three high mountainous stations in Bulgaria are investigated for the period of 1941-2008.The three stations are located on peaks Musala,Cherni vrah and Botev,where air temperature data have good quality.Some missing data were recovered using the method of differences. A significant mean annual air temperature rise happened in high mountainous parts of Bulgaria- the warming is in the order of 0.7°C for the entire period.The increase is very prominent particularly in the last 30 years.Main contributors to this overall tendency are summer months-June,July and August.To some degree,January also could be included in this group.November trend shows temperature rise at the beginning of the investigated period.One of the causes for such a tendency is atmosphere circulation in respective months.It also shows signs of considerable reorganization in both winter and summer.There is an increase of the cases of warm atmosphere patterns typical for winter, summer and autumn seasons in Bulgaria.Meridional circulation has essential significance for air temperatures during the cold half of the year.In January and June atmosphere circulation has a substantial influence on the thermal regime of air in high mountains of Bulgaria.In July,August and November this influence is reduced.There are no cycles in air temperatures for the investigated period.展开更多
The fresh snow density was observed with snow analyzer (Snow Fork) at Tianshan Station for Snowcover and Avalanche Research, Chinese Academy of Sciences from February 21 to March 5, 2009. Results show that fresh snow ...The fresh snow density was observed with snow analyzer (Snow Fork) at Tianshan Station for Snowcover and Avalanche Research, Chinese Academy of Sciences from February 21 to March 5, 2009. Results show that fresh snow density increases from the 5th h to the 291st h after the snowfall, with an average rate of increase of 4.0×10-4 g/(cm3·h) (R2 = 0.943). Analysis shows that fresh snow density is negatively correlated with the compac-tion rate of fresh snow (R2 = -0.960). Inversely, it is positively correlated with fresh snow viscosity (R2 = 0.896). In relation to meteorological factors, ground temperature rising at a depth of 40 cm is the major driving factor of snow density increase. The temperature increase in fresh snow layer and the decrease in depth hoar layer have the most prominent impacts on the snow density increase in the afternoon. Principal component analysis shows that the de-terminant factors of fresh snow density change can be grouped into 3 types as follows: 1) dynamic factor contributes about 69.71% to fresh snow density change, with a significant effect from the 5th h to the 106th h after the snowfall; 2) exogenous energy factor contributes about 20.91% to it, with a significant effect at the 130th h; and c) endoge-nous energy factor contributes about 9.38% to it, with a significant effect at the 130th h and the 195th h.展开更多
Forest canopy reduces shortwave radiation and increases the incoming longwave radiation to snowpacks beneath forest canopies. Furthermore, the effect of forest canopy may be changed by complex topography. In this pape...Forest canopy reduces shortwave radiation and increases the incoming longwave radiation to snowpacks beneath forest canopies. Furthermore, the effect of forest canopy may be changed by complex topography. In this paper, we measured and simulated the incoming longwave radiation to snow beneath forest at different canopy openness in the west Tianshan Mountains, China(43°16'N, 84°24'E) during spring 2013. A sensitivity study was conducted to explore the way that terrain influenced the incoming longwave radiation to snow beneath forest canopies. In the simulation model, measurement datasets, including air temperature, incoming shortwave radiation above canopy, and longwave radiation enhanced by adjacent terrain, were applied to calculate the incoming longwave radiation to snow beneath forest canopy. The simulation results were consistent with the measurements on hourly scale and daily scale. The effect of longwave radiation enhanced by terrain was important than that of shortwave radiation above forest canopy with different openness except the 20% canopy openness. The longwave radiation enhanced due to adjacent terrain increases with the slope increase and temperature rise. When air temperature(or slope) is relatively low, thelongwave radiation enhanced by adjacent terrain is not sensitive to slope(or air temperature), but the sensitivity increases with the decrease of snow cover area on sunny slope. The effect of longwave radiation is especially sensitive when the snow cover on sunny slope melts completely. The effect of incoming shortwave radiation reflected by adjacent terrain on incoming longwave radiation to snow beneath forest canopies is more slight than that of the enhanced longwave radiation.展开更多
In order to reveal transpiration rates of wetland plants and its relationships to micro-meterological factors in a mountain valley wetland, relative humidity, air temperature, leaf temperature, soil temperature, photo...In order to reveal transpiration rates of wetland plants and its relationships to micro-meterological factors in a mountain valley wetland, relative humidity, air temperature, leaf temperature, soil temperature, photo flux density and transpiration rates were measured once two hours in a Carex meyeriana wetland of the Changbai Mountain valley in dry (July) and wet (September) of 2003, respectively. Results showed that the tendency of "decreasing after increasing" was obvious in wet season. However, a relatively stable trend was observed for the transpiration in dry season.. Generally, the photon flux density of Carex meyeriana was higher in wet season than that in dry season. However, the variabilities of leaf temperature, air temperature and relative humidity were similar in both seasons. Higher transpiration rates of Carex meyeriana leaves were observed in July (varied from 40 to 150 mol·m-2·s-1) compared to those (varied from 7 to 14 mol·m-2·s-1) in September. Transpiration rates were significantly correlated with air temperature (P<0.01), leaf temperature (P<0.01), and wind speed (P<0.05), but correlationship between relative humidity and photo flux density was not significant (P<0.05).展开更多
文摘为实现重庆多山、多云雾、少日照等典型地理环境特征下气温的空间分布精细化模拟,本文提出了一套局部回归加地形影响修正的适宜性模型方法。该方法综合地理加权回归模型、Solar Analyst模型、改进的Angtrom-Prescott方程以及多元线性回归,基于气象站观测的气温、相对湿度、日照百分率参数以及辐射站太阳总辐射参数,结合100 m×100 m DEM数据,进行山地起伏地形下气温空间化模拟。其中,气温的地形影响修正通过起伏地形下太阳总辐射的拟合而实现。模型具有较好的模拟精度和稳定性,局部回归项的模拟精度远高于反距离权重插值(IDW)、克里金插值(Kriging),也总体优于传统的基于纬度、经度、海拔高度、日照百分率、相对湿度因子构建的全局多元回归模型;采用55个区域气象站进行单一年份夏季气温模拟精度验证,平均绝对误差为0.59℃,地形影响修正后有38个站误差降低。模型具有较好的时空维度模拟能力,能反映坡度、坡向、地形遮蔽等局地地形因子对气温的影响,具有较强的物理意义。模型与商业化的ArcGIS软件工具相结合,便于推广应用,特别适用于重庆及其周边西南山地太阳辐射低值区。
文摘Changes of air temperatures and atmosphere circulation at three high mountainous stations in Bulgaria are investigated for the period of 1941-2008.The three stations are located on peaks Musala,Cherni vrah and Botev,where air temperature data have good quality.Some missing data were recovered using the method of differences. A significant mean annual air temperature rise happened in high mountainous parts of Bulgaria- the warming is in the order of 0.7°C for the entire period.The increase is very prominent particularly in the last 30 years.Main contributors to this overall tendency are summer months-June,July and August.To some degree,January also could be included in this group.November trend shows temperature rise at the beginning of the investigated period.One of the causes for such a tendency is atmosphere circulation in respective months.It also shows signs of considerable reorganization in both winter and summer.There is an increase of the cases of warm atmosphere patterns typical for winter, summer and autumn seasons in Bulgaria.Meridional circulation has essential significance for air temperatures during the cold half of the year.In January and June atmosphere circulation has a substantial influence on the thermal regime of air in high mountains of Bulgaria.In July,August and November this influence is reduced.There are no cycles in air temperatures for the investigated period.
基金Under the auspices of National R & D Project of Social Welfare, Ministry of Science and Technology Development, China (No. GYHY200706008, GYHY200806011)West Light Foundation of Chinese Academy of Sciences (No. RCPY200902)
文摘The fresh snow density was observed with snow analyzer (Snow Fork) at Tianshan Station for Snowcover and Avalanche Research, Chinese Academy of Sciences from February 21 to March 5, 2009. Results show that fresh snow density increases from the 5th h to the 291st h after the snowfall, with an average rate of increase of 4.0×10-4 g/(cm3·h) (R2 = 0.943). Analysis shows that fresh snow density is negatively correlated with the compac-tion rate of fresh snow (R2 = -0.960). Inversely, it is positively correlated with fresh snow viscosity (R2 = 0.896). In relation to meteorological factors, ground temperature rising at a depth of 40 cm is the major driving factor of snow density increase. The temperature increase in fresh snow layer and the decrease in depth hoar layer have the most prominent impacts on the snow density increase in the afternoon. Principal component analysis shows that the de-terminant factors of fresh snow density change can be grouped into 3 types as follows: 1) dynamic factor contributes about 69.71% to fresh snow density change, with a significant effect from the 5th h to the 106th h after the snowfall; 2) exogenous energy factor contributes about 20.91% to it, with a significant effect at the 130th h; and c) endoge-nous energy factor contributes about 9.38% to it, with a significant effect at the 130th h and the 195th h.
基金funded by National Key Technology Research and Development Program of the Ministry of Science and Technology of China(Grant No.2012BAC23B01)National Natural Science Foundation of China(Grant Nos.41271098,41171066)China Special Fund for Meteorological Research in the Public Interest(GYHY201206026)
文摘Forest canopy reduces shortwave radiation and increases the incoming longwave radiation to snowpacks beneath forest canopies. Furthermore, the effect of forest canopy may be changed by complex topography. In this paper, we measured and simulated the incoming longwave radiation to snow beneath forest at different canopy openness in the west Tianshan Mountains, China(43°16'N, 84°24'E) during spring 2013. A sensitivity study was conducted to explore the way that terrain influenced the incoming longwave radiation to snow beneath forest canopies. In the simulation model, measurement datasets, including air temperature, incoming shortwave radiation above canopy, and longwave radiation enhanced by adjacent terrain, were applied to calculate the incoming longwave radiation to snow beneath forest canopy. The simulation results were consistent with the measurements on hourly scale and daily scale. The effect of longwave radiation enhanced by terrain was important than that of shortwave radiation above forest canopy with different openness except the 20% canopy openness. The longwave radiation enhanced due to adjacent terrain increases with the slope increase and temperature rise. When air temperature(or slope) is relatively low, thelongwave radiation enhanced by adjacent terrain is not sensitive to slope(or air temperature), but the sensitivity increases with the decrease of snow cover area on sunny slope. The effect of longwave radiation is especially sensitive when the snow cover on sunny slope melts completely. The effect of incoming shortwave radiation reflected by adjacent terrain on incoming longwave radiation to snow beneath forest canopies is more slight than that of the enhanced longwave radiation.
基金supported by the National Basic Research Program of China (No.2006CB403301)the National Natural Science Foundation Project (4)the Emphasis Project Fund of National Eleventh Five-Year Scientific and Technical Support Plans (No.2006BAB04A08)
文摘In order to reveal transpiration rates of wetland plants and its relationships to micro-meterological factors in a mountain valley wetland, relative humidity, air temperature, leaf temperature, soil temperature, photo flux density and transpiration rates were measured once two hours in a Carex meyeriana wetland of the Changbai Mountain valley in dry (July) and wet (September) of 2003, respectively. Results showed that the tendency of "decreasing after increasing" was obvious in wet season. However, a relatively stable trend was observed for the transpiration in dry season.. Generally, the photon flux density of Carex meyeriana was higher in wet season than that in dry season. However, the variabilities of leaf temperature, air temperature and relative humidity were similar in both seasons. Higher transpiration rates of Carex meyeriana leaves were observed in July (varied from 40 to 150 mol·m-2·s-1) compared to those (varied from 7 to 14 mol·m-2·s-1) in September. Transpiration rates were significantly correlated with air temperature (P<0.01), leaf temperature (P<0.01), and wind speed (P<0.05), but correlationship between relative humidity and photo flux density was not significant (P<0.05).