Topography, especially altitude, will influence the way, process and characteristics of land cover changes in mountainous area, simultaneously, the vertical difference of land cover changes will affect soil quality an...Topography, especially altitude, will influence the way, process and characteristics of land cover changes in mountainous area, simultaneously, the vertical difference of land cover changes will affect soil quality and regional ecological environment. Therefore, the gradient relationship analysis between land cover changes and altitude is very important for regional sustainability. This study investigated land cover dynamics based on land cover data from a typical mountainous area in the Guizhou-Guangxi karst mountain area, China, in 2000 and 2010, then explored the relationship between altitude and land cover change and analyzed different drivers of land cover change at different altitudes. Our findings are as follows. 1) From 2000 to 2010, the total area of land cover transition was 7167.04 km^2 or 2.8% of the region. The increasing area of build-up land(926.23 km^2) was larger than that of forest(859.38 km^2), suggesting that the urban construction speed was higher than that of reforestation. 2) Intensity of land cover transition in northwestern Guizhou-Guangxi karst mountain area was much larger than that of southeast part and their transition trend was also significantly different, which was consistent with regional population and economy. 3) Human activity was the most dramatic at altitudes between 0–500 m. For 500–1000 m, grassland mainly converted to forest and build-up land. Area of land cover transition was the greatest between 1000–1500 m, while above 1500 m, the transition of grassland was the most obvious. 4) The drivers of land cover change varied. Land cover change was positively correlated with gross domestic product and population density but was inversely related to relief amplitude. There were correlations between land cover change and distance to roads and rivers, and their correlations varied with altitude. By revealing patterns and causes of land cover changes in different altitudes, we hope to understand the vertical dependence of land cover changes, so as to improve land productivity and protect land ecological environment scientifically.展开更多
Dam-break analysis is of great importance in mountain environment,especially where reservoirs are located upstream of densely populated areas and hydraulic hazard should be assessed for land planning purposes.Accordin...Dam-break analysis is of great importance in mountain environment,especially where reservoirs are located upstream of densely populated areas and hydraulic hazard should be assessed for land planning purposes.Accordingly,there is a need to identify suitable operative tools which may differ from the ones used in flat flood-prone areas.This paper shows the results provided by a 1D and a 2D model based on the Shallow Water Equations(SWE) for dam-break wave propagation in alpine regions.The 1D model takes advantage of a topographic toolkit that includes an algorithm for pre-processing the Digital Elevation Model(DEM) and of a novel criterion for the automatic cross-section space refinement.The 2D model is FLO-2D,a commercial software widely used for flood routing in mountain areas.In order to verify the predictive effectiveness of these numerical models,the test case of the Cancano dam-break has been recovered from the historical study of De Marchi(1945),which provides a unique laboratory data set concerning the consequences of the potential collapse of the former Cancano dam(Northern Italy).The measured discharge hydrograph at the dam also provides the data to test a simplified method recently proposed for the characterization of the hydrograph following a sudden dam-break.展开更多
基金supported by the National Key Basic Research Program of China (973Program, 2015CB452706)the youth talent team program of the Institute of Mountain Hazards and Environment, CAS (SDSQB-2015-01)+1 种基金the National Natural Science Foundation of China (41401198 and 41571527)the Youth Innovation Promotion Association, CAS(No. 2016332)
文摘Topography, especially altitude, will influence the way, process and characteristics of land cover changes in mountainous area, simultaneously, the vertical difference of land cover changes will affect soil quality and regional ecological environment. Therefore, the gradient relationship analysis between land cover changes and altitude is very important for regional sustainability. This study investigated land cover dynamics based on land cover data from a typical mountainous area in the Guizhou-Guangxi karst mountain area, China, in 2000 and 2010, then explored the relationship between altitude and land cover change and analyzed different drivers of land cover change at different altitudes. Our findings are as follows. 1) From 2000 to 2010, the total area of land cover transition was 7167.04 km^2 or 2.8% of the region. The increasing area of build-up land(926.23 km^2) was larger than that of forest(859.38 km^2), suggesting that the urban construction speed was higher than that of reforestation. 2) Intensity of land cover transition in northwestern Guizhou-Guangxi karst mountain area was much larger than that of southeast part and their transition trend was also significantly different, which was consistent with regional population and economy. 3) Human activity was the most dramatic at altitudes between 0–500 m. For 500–1000 m, grassland mainly converted to forest and build-up land. Area of land cover transition was the greatest between 1000–1500 m, while above 1500 m, the transition of grassland was the most obvious. 4) The drivers of land cover change varied. Land cover change was positively correlated with gross domestic product and population density but was inversely related to relief amplitude. There were correlations between land cover change and distance to roads and rivers, and their correlations varied with altitude. By revealing patterns and causes of land cover changes in different altitudes, we hope to understand the vertical dependence of land cover changes, so as to improve land productivity and protect land ecological environment scientifically.
基金developed within the European Project Kulturisk (Grant agreement 265280)
文摘Dam-break analysis is of great importance in mountain environment,especially where reservoirs are located upstream of densely populated areas and hydraulic hazard should be assessed for land planning purposes.Accordingly,there is a need to identify suitable operative tools which may differ from the ones used in flat flood-prone areas.This paper shows the results provided by a 1D and a 2D model based on the Shallow Water Equations(SWE) for dam-break wave propagation in alpine regions.The 1D model takes advantage of a topographic toolkit that includes an algorithm for pre-processing the Digital Elevation Model(DEM) and of a novel criterion for the automatic cross-section space refinement.The 2D model is FLO-2D,a commercial software widely used for flood routing in mountain areas.In order to verify the predictive effectiveness of these numerical models,the test case of the Cancano dam-break has been recovered from the historical study of De Marchi(1945),which provides a unique laboratory data set concerning the consequences of the potential collapse of the former Cancano dam(Northern Italy).The measured discharge hydrograph at the dam also provides the data to test a simplified method recently proposed for the characterization of the hydrograph following a sudden dam-break.