A field experiment of nocturnal mountain wind and corresponding particulate matter (PM) evolution under weak synoptic forcing at five sites within urban Beijing was conducted using a moving Doppler wind lidar and a ...A field experiment of nocturnal mountain wind and corresponding particulate matter (PM) evolution under weak synoptic forcing at five sites within urban Beijing was conducted using a moving Doppler wind lidar and a fixed tower. Clear wind shear and zero-horizontal-wind zones at 40-320 m above the ground with a delay of 1.5 h were found at two sites between 20 km from north to south urban Beijing. The wind speed and height of the low-level jet at the north urban Beijing site were greater than those at the east urban Beijing site. The average horizontal distribution of low-level PM at 240 m was similar to the ground-level PM at night. The PM2.s (aerodynamic diameter ≤2.5 μm) accumulation center showed no abrupt changes with a shift in wind direction until the northerly wind jet arrived.展开更多
基金supported by the National Natural Science Foundation of China[grant number 91544221],[grant number41571130024],[grant number 41675137],[grant number41505091]the LAPC Free Exploration Fund
文摘A field experiment of nocturnal mountain wind and corresponding particulate matter (PM) evolution under weak synoptic forcing at five sites within urban Beijing was conducted using a moving Doppler wind lidar and a fixed tower. Clear wind shear and zero-horizontal-wind zones at 40-320 m above the ground with a delay of 1.5 h were found at two sites between 20 km from north to south urban Beijing. The wind speed and height of the low-level jet at the north urban Beijing site were greater than those at the east urban Beijing site. The average horizontal distribution of low-level PM at 240 m was similar to the ground-level PM at night. The PM2.s (aerodynamic diameter ≤2.5 μm) accumulation center showed no abrupt changes with a shift in wind direction until the northerly wind jet arrived.