The unstable zinc(Zn)/electrolyte interfaces formed by undesired dendrites and parasitic side reactions greatly hinder the development of aqueous zinc ion batteries.Herein,the hydroxy-rich sorbitol was used as an addi...The unstable zinc(Zn)/electrolyte interfaces formed by undesired dendrites and parasitic side reactions greatly hinder the development of aqueous zinc ion batteries.Herein,the hydroxy-rich sorbitol was used as an additive to reshape the solvation structure and modulate the interface chemistry.The strong interactions among sorbitol and both water molecules and Zn electrode can reduce the free water activity,optimize the solvation shell of water and Zn^(2+)ions,and regulate the formation of local water(H_(2)O)-poor environment on the surface of Zn electrode,which effectively inhibit the decomposition of water molecules,and thus,achieve the thermodynamically stable and highly reversible Zn electrochemistry.As a result,the assembled Zn/Zn symmetric cells with the sorbitol additive realized an excellent cycling life of 2000 h at 1 mA·cm^(-2)and 1 mAh·cm^(-2),and over 250 h at 5 mA.cm^(-2)and 5 mAh.cm^(-2).Moreover,the Zn/Cu asymmetric cells with the sorbitol additive achieved a high Coulombic efficiency of 99.6%,obtaining a better performance than that with a pure 2 mol-L^(-1)ZnSO_(4)electrolyte.And the constructed Zn/poly1,5-naphthalenediamine(PNDA)batteries could be stably discharged for 2300 cycles at 1 A g^(-1)with an excellent capacity retention rate.This result indicates that the addition of 1 mol-L^(-1)non-toxic sorbitol into a conventional ZnSO_(4)electrolyte can successfully protect the Zn anode interface by improving the electrochemical properties of Zn reversible deposition/decomposition,which greatly promotes its cycle performance,providing a new approach in future development of high performance aqueous Zn ion batteries.展开更多
Panzhihua city (26°O5'-27°21'N, 101°OS'- 102°15'E), located in a mountainous area, is one of the large cities in Sichuan province, China. A landslide occurred in the filling body of the easte...Panzhihua city (26°O5'-27°21'N, 101°OS'- 102°15'E), located in a mountainous area, is one of the large cities in Sichuan province, China. A landslide occurred in the filling body of the eastern part of the Panzhihua airport on October 3, 2009 (hereafter called the lo.3 landslide). We conducted field survey on the landslide and adopted emergency monitoring and warning models based on the Internet of Things (loT) to estimate the losses from the disaster and to prevent a secondary disaster from occurring. The results showed that four major features of the airport site had contributed to the landslide, i.e, high altitude, huge amount of filling rocks, deep backfilling and great difficulty of backfilling. The deformation process of the landslide had six stages and the unstable geological structure of high fillings and an earthquake were the main causes of the landslide. We adopted relative displacement sensing technology and Global System for Mobile Communications (GSM) technology to achieve remote, real-time and unattended monitoring of ground cracks in the landslide. The monitoring system, including five extensometers with measuring ranges of 200, 450 and 7oo mm, was continuously working for 17 months and released 7 warning signals with an average warning time of about 26 hours. At 10 am on 6 December 2009, the system issued a warning and on-site workers were evacuated and equipment protected immediately. At 2:20 medium-scale collapse monitoring site, which proved the reliability pm on 7 December, a occurred at the No. 5 justified the alarm and and efficiency of the monitoring system.展开更多
The mechanisms regulating spring phenology have been extensively studied in angiosperm species.However,given that gymnosperms and angiosperms diverged 300 million years ago,phenology may be triggered by different cues...The mechanisms regulating spring phenology have been extensively studied in angiosperm species.However,given that gymnosperms and angiosperms diverged 300 million years ago,phenology may be triggered by different cues in gymnosperm species.The regulatory mechanisms of phenology in subtropical regions remain largely unknown.In combination,it remains untested whether subtropical gymnosperm species have chilling requirements and are photosensitive.We conducted a climate chamber experiment with three chilling and three photoperiod treatments to investigate budburst during an 8-week forcing period.We tested whether budburst of eight gymnosperms species(Cryptomeria japonica,Cunninghamia lanceolata,Cupressus funebris,Ginkgo biloba,Metasequoia glyptostroboides,Pinus massoniana,Pseudolarix amabilis and Podocarpus macrophyllus)was photoperiod sensitive or has strong chilling requirements and whether photoperiod or chilling was more important for advancing budburst.Chilling advanced budburst and increased the percentage of budburst for gymnosperm species.Gymnosperm species required moderate chilling days to advance budburst.Interestingly,the forcing requirement for gymnosperm species was higher than that for angiosperms in the same forest,suggesting that gymnosperms may need more cumulative forcing to initiate budburst than do angiosperms.Compared with temperate gymnosperm species in Germany(194-600℃days),the subtropical species studied here had a much higher forcing requirement(814-1150℃days).The effects of photoperiod were minor,suggesting that chilling outweighs photoperiod in advancing budburst of gymnosperm species in this subtropical region.These results reveal that increased winter temperatures with continued global warming may impact not only angiosperms but also gymnosperms,leading to their delayed spring budburst.展开更多
Lonicera confusa, a traditional Chinese medicine herb for treating cold, flu, acute fever, and so forth, is often grown artificially in acidic soils and suffers from phosphorus (P) deficiency. A five-year field experi...Lonicera confusa, a traditional Chinese medicine herb for treating cold, flu, acute fever, and so forth, is often grown artificially in acidic soils and suffers from phosphorus (P) deficiency. A five-year field experiment was carried out to study the colonization rate, growth, nutrition, and chlorogenic acid content of Lonicera confusa seedlings inoculated with arbuscular mycorrhizal (AM) fungi, Glomus etunicatum and Glomus intraradices. Before transplanting into a field, both AM-inoculated and uninoculated control plants were cultured in nursery beds. In the plants inoculated with the AM fungi, the colonization rate decreased linearly with time and a greater decrease was observed in the plants inoculated with G. intraradices than with G. etunicatum, while the AM colonization increased from 0% to 12.1% in the uninoculated control plants 5 years after transplanting. Plant height, crown diameter, number of new branches, and flower yield increased significantly by AM inoculation as compared to the uninoculated control. Phosphorus concentrations in leaves and flowers increased, and plant uptake of nutrients, e.g., nitrogen (N), P, and potassium (K), was also enhanced significantly by AM inoculation. The Lonicera confusa seedlings had a better response to inoculation of G. intraradices than G. etunicatum in both growth and chlorogenic acid content in flowers. In contrast, both plant P uptake and P concentrations in leaves and flowers were similar between two fungal inoculations. The positive responses of Lonicera confusa to AM inoculation in growth, nutrient uptake, flowering, and chlorogenic acid content in flowers suggested that AM inoculation in nursery beds could promote the plant growth and increase chlorogenic acid content in flowers of Lonicera confusa when grown on acidic and P-deficient soils.展开更多
基金supported by the National Natural Science Foundation of China(22279063,52001170)Tianjin Natural Science Foundation(22JCYBJC00590)the Fundamental Research Funds for the Central Universities.We thank the Haihe Laboratoryof Sustainable Chemical Transformations for financial support.
文摘The unstable zinc(Zn)/electrolyte interfaces formed by undesired dendrites and parasitic side reactions greatly hinder the development of aqueous zinc ion batteries.Herein,the hydroxy-rich sorbitol was used as an additive to reshape the solvation structure and modulate the interface chemistry.The strong interactions among sorbitol and both water molecules and Zn electrode can reduce the free water activity,optimize the solvation shell of water and Zn^(2+)ions,and regulate the formation of local water(H_(2)O)-poor environment on the surface of Zn electrode,which effectively inhibit the decomposition of water molecules,and thus,achieve the thermodynamically stable and highly reversible Zn electrochemistry.As a result,the assembled Zn/Zn symmetric cells with the sorbitol additive realized an excellent cycling life of 2000 h at 1 mA·cm^(-2)and 1 mAh·cm^(-2),and over 250 h at 5 mA.cm^(-2)and 5 mAh.cm^(-2).Moreover,the Zn/Cu asymmetric cells with the sorbitol additive achieved a high Coulombic efficiency of 99.6%,obtaining a better performance than that with a pure 2 mol-L^(-1)ZnSO_(4)electrolyte.And the constructed Zn/poly1,5-naphthalenediamine(PNDA)batteries could be stably discharged for 2300 cycles at 1 A g^(-1)with an excellent capacity retention rate.This result indicates that the addition of 1 mol-L^(-1)non-toxic sorbitol into a conventional ZnSO_(4)electrolyte can successfully protect the Zn anode interface by improving the electrochemical properties of Zn reversible deposition/decomposition,which greatly promotes its cycle performance,providing a new approach in future development of high performance aqueous Zn ion batteries.
基金supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 40125015)a Research Project of the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Grant No. SKLGP2010Z002)+1 种基金the Science and Technique Plans for Sichuan Province, China (Grant No. 2011SZ0182 and NO. 2013SZ0168)the Fundamental Science on Nuclear Waste and Environmental Security Laboratory (Grant No. 12zxnp04)
文摘Panzhihua city (26°O5'-27°21'N, 101°OS'- 102°15'E), located in a mountainous area, is one of the large cities in Sichuan province, China. A landslide occurred in the filling body of the eastern part of the Panzhihua airport on October 3, 2009 (hereafter called the lo.3 landslide). We conducted field survey on the landslide and adopted emergency monitoring and warning models based on the Internet of Things (loT) to estimate the losses from the disaster and to prevent a secondary disaster from occurring. The results showed that four major features of the airport site had contributed to the landslide, i.e, high altitude, huge amount of filling rocks, deep backfilling and great difficulty of backfilling. The deformation process of the landslide had six stages and the unstable geological structure of high fillings and an earthquake were the main causes of the landslide. We adopted relative displacement sensing technology and Global System for Mobile Communications (GSM) technology to achieve remote, real-time and unattended monitoring of ground cracks in the landslide. The monitoring system, including five extensometers with measuring ranges of 200, 450 and 7oo mm, was continuously working for 17 months and released 7 warning signals with an average warning time of about 26 hours. At 10 am on 6 December 2009, the system issued a warning and on-site workers were evacuated and equipment protected immediately. At 2:20 medium-scale collapse monitoring site, which proved the reliability pm on 7 December, a occurred at the No. 5 justified the alarm and and efficiency of the monitoring system.
基金supported by the Innovative Research Team Program of Hainan Natural Science Fund(2018CXTD331)the Natural Science Foundation of Hainan Province(320RC504)Hainan University(KYQD(ZR)1979).
文摘The mechanisms regulating spring phenology have been extensively studied in angiosperm species.However,given that gymnosperms and angiosperms diverged 300 million years ago,phenology may be triggered by different cues in gymnosperm species.The regulatory mechanisms of phenology in subtropical regions remain largely unknown.In combination,it remains untested whether subtropical gymnosperm species have chilling requirements and are photosensitive.We conducted a climate chamber experiment with three chilling and three photoperiod treatments to investigate budburst during an 8-week forcing period.We tested whether budburst of eight gymnosperms species(Cryptomeria japonica,Cunninghamia lanceolata,Cupressus funebris,Ginkgo biloba,Metasequoia glyptostroboides,Pinus massoniana,Pseudolarix amabilis and Podocarpus macrophyllus)was photoperiod sensitive or has strong chilling requirements and whether photoperiod or chilling was more important for advancing budburst.Chilling advanced budburst and increased the percentage of budburst for gymnosperm species.Gymnosperm species required moderate chilling days to advance budburst.Interestingly,the forcing requirement for gymnosperm species was higher than that for angiosperms in the same forest,suggesting that gymnosperms may need more cumulative forcing to initiate budburst than do angiosperms.Compared with temperate gymnosperm species in Germany(194-600℃days),the subtropical species studied here had a much higher forcing requirement(814-1150℃days).The effects of photoperiod were minor,suggesting that chilling outweighs photoperiod in advancing budburst of gymnosperm species in this subtropical region.These results reveal that increased winter temperatures with continued global warming may impact not only angiosperms but also gymnosperms,leading to their delayed spring budburst.
基金Supported by the Technology Innovation Program of Southwest University of China (No. Ky2009022)the National Natural Science Foundation of China (No. 41171215)
文摘Lonicera confusa, a traditional Chinese medicine herb for treating cold, flu, acute fever, and so forth, is often grown artificially in acidic soils and suffers from phosphorus (P) deficiency. A five-year field experiment was carried out to study the colonization rate, growth, nutrition, and chlorogenic acid content of Lonicera confusa seedlings inoculated with arbuscular mycorrhizal (AM) fungi, Glomus etunicatum and Glomus intraradices. Before transplanting into a field, both AM-inoculated and uninoculated control plants were cultured in nursery beds. In the plants inoculated with the AM fungi, the colonization rate decreased linearly with time and a greater decrease was observed in the plants inoculated with G. intraradices than with G. etunicatum, while the AM colonization increased from 0% to 12.1% in the uninoculated control plants 5 years after transplanting. Plant height, crown diameter, number of new branches, and flower yield increased significantly by AM inoculation as compared to the uninoculated control. Phosphorus concentrations in leaves and flowers increased, and plant uptake of nutrients, e.g., nitrogen (N), P, and potassium (K), was also enhanced significantly by AM inoculation. The Lonicera confusa seedlings had a better response to inoculation of G. intraradices than G. etunicatum in both growth and chlorogenic acid content in flowers. In contrast, both plant P uptake and P concentrations in leaves and flowers were similar between two fungal inoculations. The positive responses of Lonicera confusa to AM inoculation in growth, nutrient uptake, flowering, and chlorogenic acid content in flowers suggested that AM inoculation in nursery beds could promote the plant growth and increase chlorogenic acid content in flowers of Lonicera confusa when grown on acidic and P-deficient soils.