期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Modified Mohr-Coulomb strength criterion considering rock mass intrinsic material strength factorization 被引量:6
1
作者 ZHANG Qiang,WANG Shuilin,GE Xiurun,WANG Hongying State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,Wuhan 430071,China 《Mining Science and Technology》 EI CAS 2010年第5期701-706,共6页
With the increase of mining depth of mineral resources,the rock mass stress state is being more and more complex.The rock mass show different features,namely,with the increase of hydrostatic pressure,rock mass failure... With the increase of mining depth of mineral resources,the rock mass stress state is being more and more complex.The rock mass show different features,namely,with the increase of hydrostatic pressure,rock mass failure mode turns from brittle tension failure to structure ductile failure and its limit strength also increases.The restriction of minimal principal stress on the initiation and development of microcrack and the change of micro-unit stress state by the intermediate principal stress play a decisive role in the increase of rock mass limit strength.Based on the rock mass failure behavior law under complex stress state and the σ2-dependence on the rock mass strength,we proposed a Modified Mohr-Coulomb(M-MC) strength criterion which is smooth and convex.Finally,the M-MC criterion is validated by multiaxial test data of eight kinds of rock mass.We also compared the fitting results with Mohr-Coulomb criterion(MC).It shows that the new criterion fits the test data better than the Mohr-Coulomb criterion.So the M-MC strength criterion well reveals the rock mass bearing behavior and can be widely used in the rock mass strength analysis.The results can provide theoretical foundations for stability analysis and reinforcement design of complex underground engineering. 展开更多
关键词 rock mass strength criterion Mohr-Coulomb criterion multiaxial test failure mode underground engineering
下载PDF
Characteristics of oil shale pyrolysis in a two-stage fluidized bed 被引量:1
2
作者 Yong Tian Mengya Li +3 位作者 Dengguo Lai Zhaohui Chen Shiqiu Gao Guangwen Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第2期407-414,共8页
Rapid pyrolysis of oil shale coupled with in-situ upgrading of pyrolysis volatiles over oil shale char was studied in a laboratory two-stage fluidized bed(TSFB) to clarify the shale oil yield and quality and their var... Rapid pyrolysis of oil shale coupled with in-situ upgrading of pyrolysis volatiles over oil shale char was studied in a laboratory two-stage fluidized bed(TSFB) to clarify the shale oil yield and quality and their variations with operating conditions. Rapid pyrolysis of oil shale in fluidized bed(FB) obtained shale oil yield higher than the Fischer Assay oil yield at temperatures of 500-600 ℃. The highest yield was 12.7 wt% at 500 ℃ and was about1.3 times of the Fischer Assay oil yield. The heavy fraction(boiling point > 350 ℃) in shale oil at all temperatures from rapid pyrolysis was above 50%. Adding an upper FB of secondary cracking over oil shale char caused the loss of shale oil but improved its quality. Heavy fraction yield decreased significantly and almost disappeared at temperatures above 550 ℃, while the corresponding light fraction(boiling point < 350 ℃) yield dramatically increased. In terms of achieving high light fraction yield, the optimal pyrolysis and also secondary cracking temperatures in TSFB were 600 ℃, at which the shale oil yield decreased by 17.74% but its light fraction yield of 7.07 wt% increased by 86.11% in comparison with FB pyrolysis. The light fraction yield was higher than that of Fischer Assay at all cases in TSFB. Thus, a rapid pyrolysis of oil shale combined with volatile upgrading was important for producing high-quality shale oil with high yield as well. 展开更多
关键词 Oil shale Pyrolysis Fluidized-bed Upgrading Secondary cracking Reactors
下载PDF
南岭中段骑田岭花岗岩基的锆石U-Pb年代学格架 被引量:59
3
作者 朱金初 王汝成 +8 位作者 张佩华 谢才富 张文兰 赵葵东 谢磊 杨策 车旭东 于阿朋 王禄彬 《中国科学(D辑)》 CSCD 北大核心 2009年第8期1112-1127,共16页
骑田岭花岗岩体位于南岭中段,湖南省南部,总出露面积约520km2.根据本文已获得的25个及其他作者已发表的7个有效和相互协调的单颗粒锆石U-Pb定年数据,结合地质学、岩石学和空间分布等特征,认为骑田岭岩体是一个燕山早期多阶段形成的复式... 骑田岭花岗岩体位于南岭中段,湖南省南部,总出露面积约520km2.根据本文已获得的25个及其他作者已发表的7个有效和相互协调的单颗粒锆石U-Pb定年数据,结合地质学、岩石学和空间分布等特征,认为骑田岭岩体是一个燕山早期多阶段形成的复式岩基,主要可分成3个侵入阶段:第一阶段,侵位于163~160Ma,峰值在161Ma左右,主要为角闪石黑云母二长花岗岩,有时为黑云母二长花岗岩,出露面积约占45%,分布在岩体东部、北部和西部的靠边缘部位,可进一步分解为菜岭、江口、竹枧水、蒋家洞和安源等岩体;第二阶段,侵位于157~153Ma,峰值在157~156Ma,主要为黑云母花岗岩,有时含不同数量角闪石,出露面积约占40%,主要分布在岩体的中部和南部,可进一步分解为芙蓉、将军寨、廖家洞和将军石等岩体;第三阶段,侵位于150~146Ma,峰值在149Ma左右,主要为细粒(有时含斑)黑云母花岗岩,出露面积约占12%,分布在岩体的中南部位,可进一步分解为荒塘岭、大山里和仙鹤抱蛋等岩体.其中前两个阶段花岗岩构成岩基的主侵入相,第三阶段花岗岩为补充侵入相.另有一些侵入到第一阶段和第二阶段岩体中的细粒花岗岩岩瘤(如回头湾、龙渡岭、屋场坪)和岩脉,出露面积约占3%,在岩基范围内零散分布,其侵位年龄主要在第二阶段花岗岩的范围内,他们是侵入到早些时间已固结岩石裂隙空间的晚阶段侵入相.根据不同阶段花岗岩结晶年龄的时间差和他们之间明显的侵入接触关系和冷凝-烘烤现象,可以认为,从骑田岭花岗岩基侵位、冷却、结晶、固结到产生裂隙的时间,不会超过2-6Ma.中晚侏罗世在骑田岭及其周边的南岭地区,广泛发育同时代的花岗质和中基性岩浆活动,反映了燕山早期是本区岩浆活动的高峰期,此时本区处于大陆内部岩石圈伸展、减薄的构造环境,壳幔相互作用对本区花岗岩的形成有至关重要的影响. 展开更多
关键词 南岭 骑田岭 花岗复式 单颗粒锆石U-Pb定年 期次划分 岩体分解
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部