The nonlinear Hoek-Brown failure criterion was introduced to limit analysis by applying the tangent method. Based on the failure mechanism of double-logarithmic spiral curves on the face of deep rock tunnels, the anal...The nonlinear Hoek-Brown failure criterion was introduced to limit analysis by applying the tangent method. Based on the failure mechanism of double-logarithmic spiral curves on the face of deep rock tunnels, the analytical solutions of collapse pressure were derived through utilizing the virtual power principle in the case of pore water, and the optimal solutions of collapse pressure were obtained by using the optimization programs of mathematical model with regard of a maximum problem. In comparison with existing research with the same parameters, the consistency of change rule shows the validity of the proposed method. Moreover, parametric study indicates that nonlinear Hoek-Brown failure criterion and pore water pressure have great influence on collapse pressure and failure shape of tunnel faces in deep rock masses, particularly when the surrounding rock is too weak or under the condition of great disturbance and abundant ground water, and in this case, supporting measures should be intensified so as to prevent the occurrence of collapse.展开更多
基金Project(2013CB036004)supported by National Basic Research Program of ChinaProjects(51178468,51378510)supported by National Natural Science Foundation of ChinaProject(CX2013B077)supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘The nonlinear Hoek-Brown failure criterion was introduced to limit analysis by applying the tangent method. Based on the failure mechanism of double-logarithmic spiral curves on the face of deep rock tunnels, the analytical solutions of collapse pressure were derived through utilizing the virtual power principle in the case of pore water, and the optimal solutions of collapse pressure were obtained by using the optimization programs of mathematical model with regard of a maximum problem. In comparison with existing research with the same parameters, the consistency of change rule shows the validity of the proposed method. Moreover, parametric study indicates that nonlinear Hoek-Brown failure criterion and pore water pressure have great influence on collapse pressure and failure shape of tunnel faces in deep rock masses, particularly when the surrounding rock is too weak or under the condition of great disturbance and abundant ground water, and in this case, supporting measures should be intensified so as to prevent the occurrence of collapse.