For geotechnical stability analysis involving the Drucker-Prager(DP)criterion,both the c-ϕreduction scheme and the M-K reduction scheme can be utilized.With the aid of the second-order cone programming optimized finit...For geotechnical stability analysis involving the Drucker-Prager(DP)criterion,both the c-ϕreduction scheme and the M-K reduction scheme can be utilized.With the aid of the second-order cone programming optimized finite element method(FEM-SOCP),a comparison of the two strength reduction schemes for the stability analysis of a homogeneous slope and a multilayered slope is carried out.Numerical investigations disclose that the FoS results calculated by the c-ϕreduction scheme agree well with those calculated by the classical Morgenstern-Price solutions.However,the FoS results attained by the M-K reduction scheme may lead to conservative estimation of the geotechnical safety,particularly for the cases with large internal friction angles.In view of the possible big difference in stability analysis results caused by the M-K reduction scheme,the c-ϕreduction scheme is recommended for the geotechnical stability analyses involving the DP criterion.展开更多
In order to study the mechanism of the zonal disintegration phenomenon(ZDP),both experimental and theoretical investigations were carried out.Firstly,based on the similarity law,gypsum was chosen as equivalent materia...In order to study the mechanism of the zonal disintegration phenomenon(ZDP),both experimental and theoretical investigations were carried out.Firstly,based on the similarity law,gypsum was chosen as equivalent material to simulate the deep rock mass,the excavation of deep tunnel was modeled by drilling a hole in the gypsum models,two circular cracked zones were measured in the model,and ZDP in the enclosing rock mass around deep tunnel was simulated in 3D gypsum model tests.Secondly, based on the elasto-plastic analysis of the stressed-strained state of the surrounding rock mass with the improved Hoek-Brown strength criterion and the bilinear constitutive model,the maximum stress zone occurred in vicinity of the elastic-plastic interface due to the excavation of the deep tunnel,rock material in maximum stress zone is in the approximate uniaxial loading state owing to the larger tangential force and smaller radial force,the mechanism of ZDP was explained,which lay in the creep instability failure of rock mass due to the development of plastic zone and transfer of the maximum stress zone within the rock mass.Thirdly,the analytical critical depth for the occurrence of ZDP was obtained,which depended on the mechanical indices and stress concentration coefficient of rock mass.展开更多
基金Projects(42002277,41972279,41772291)supported by the National Natural Science Foundation of ChinaProjects(2020M680321,2021T140046)supported by the China Postdoctoral Science Foundation+1 种基金Projects(2020-zz-081,2021-PC-003)supported by the Beijing Postdoctoral Research Foundation,ChinaProject(X21074)supported by the Fundamental Research Funds for Beijing University of Civil Engineering and Architecture,China。
文摘For geotechnical stability analysis involving the Drucker-Prager(DP)criterion,both the c-ϕreduction scheme and the M-K reduction scheme can be utilized.With the aid of the second-order cone programming optimized finite element method(FEM-SOCP),a comparison of the two strength reduction schemes for the stability analysis of a homogeneous slope and a multilayered slope is carried out.Numerical investigations disclose that the FoS results calculated by the c-ϕreduction scheme agree well with those calculated by the classical Morgenstern-Price solutions.However,the FoS results attained by the M-K reduction scheme may lead to conservative estimation of the geotechnical safety,particularly for the cases with large internal friction angles.In view of the possible big difference in stability analysis results caused by the M-K reduction scheme,the c-ϕreduction scheme is recommended for the geotechnical stability analyses involving the DP criterion.
基金Projects(50525825,90815010)supported by the National Natural Science Foundation of ChinaProject(2009CB724608)supported by the Major state Basic Research Development Program of China
文摘In order to study the mechanism of the zonal disintegration phenomenon(ZDP),both experimental and theoretical investigations were carried out.Firstly,based on the similarity law,gypsum was chosen as equivalent material to simulate the deep rock mass,the excavation of deep tunnel was modeled by drilling a hole in the gypsum models,two circular cracked zones were measured in the model,and ZDP in the enclosing rock mass around deep tunnel was simulated in 3D gypsum model tests.Secondly, based on the elasto-plastic analysis of the stressed-strained state of the surrounding rock mass with the improved Hoek-Brown strength criterion and the bilinear constitutive model,the maximum stress zone occurred in vicinity of the elastic-plastic interface due to the excavation of the deep tunnel,rock material in maximum stress zone is in the approximate uniaxial loading state owing to the larger tangential force and smaller radial force,the mechanism of ZDP was explained,which lay in the creep instability failure of rock mass due to the development of plastic zone and transfer of the maximum stress zone within the rock mass.Thirdly,the analytical critical depth for the occurrence of ZDP was obtained,which depended on the mechanical indices and stress concentration coefficient of rock mass.