Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope duri...Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope during excavation of a deep tunnel. Zonal disintegration phenomenon was successfully demonstrated in the laboratory with 3D tests on analogous gypsum models, two circular cracked zones were observed in the test. The linear Mohr-Coulomb yield criterion was used with a constitutive model that showed linear softening and ideal residual plastic to analyze the elasto-plastic field of the enclosing rock mass around a deep tunnel. The results show that tunneling causes a maximum stress zone to appear between an elastic and plastic zone in the surrounding rock. The zonal disintegration phenomenon is analyzed by considering the stress-strain state of the rock mass in the vicinity of the maximum stress zone. Creep instability failure of the rock due to the development of the plastic zone, and transfer of the maximum stress zone into the rock mass, are the cause of zonal disintegration. An analytical criterion for the critical depth at which zonal disintegration can occur is derived. This depth depends mainly on the character and stress concentration coefficient of the rock mass.展开更多
Design and construction of engineering structures in geomaterials with block-in-matrix texture(referred as bimrock) such as conglomerates,breccias and agglomerates are challenging tasks for engineers.When dealing with...Design and construction of engineering structures in geomaterials with block-in-matrix texture(referred as bimrock) such as conglomerates,breccias and agglomerates are challenging tasks for engineers.When dealing with these materials in important structures such as open pits with high walls and pillars of deep underground mines,understanding the complete stress-strain behavior,including post-peak region,is a formidable yet crucial engineering practice.To study the post-peak behavior of bimrocks,artificial specimens were fabricated with a mixture of rock blocks and a cementing agent.All the experiments were conducted under uniaxial compression using a servo-control testing machine.The results show that the specimens with the highest block proportion(around 90% by mass) showed a small decrease in stress with strain increment in the post-peak region.The specimens with lower block proportions were characterized by an approximately steep fall in stress and following to residual stress.Based on the study,it is inferred that all the artificial specimens undergo post-failure deformation and the type of post behavior depends on rock block proportions.展开更多
Collisional orogens form when tectonic forces amalgamte fragments of Earth’s continental lithosphere.The sutures between individual fragments,or terranes,are potential sites of weakness that facilitate subsequent con...Collisional orogens form when tectonic forces amalgamte fragments of Earth’s continental lithosphere.The sutures between individual fragments,or terranes,are potential sites of weakness that facilitate subsequent continental breakup.Therefore,the lithospheric architecture of collisional orogens provides key information for evaluating the long-term evolution of the continental interior:for example,the South China Block(SCB),where the tectonic history is severely obscured by extensive surface deformation,magmatism,and metamorphism.Using new passive-source seismic models,we show a contrasting seismic architecture across the SCB,with three prominent crustal dipping structures across the Jiangnan Orogen.Combined with constraints from multi-disciplinary regional geophysical datasets,these pronounced dipping patterns are interpreted as relict wedge-like lithospheric deformation zones initiated in the fossil collisions that assembled the Yangtze Block and the SCB.The overall trend of these tectonic wedges implies successive crustal growth along paleo-continental margins and is indicative of northward subduction and docking of accretional terranes.In contrast,no such dipping structures are preserved in the Cathaysia Block,indicating a weak and reorganized lithosphere.The variations in the deformation responses across the SCB reflect the long-term modifications of the lithosphere caused by prolonged collision and extension events throughout the tectonic history of the SCB.Our results demonstrate the critical roles that suture zones played in the successive growth and evolution of the continental lithosphere.展开更多
基金Projects 50490275 and 50525825 supported by the National Natural Science Foundation of China
文摘Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope during excavation of a deep tunnel. Zonal disintegration phenomenon was successfully demonstrated in the laboratory with 3D tests on analogous gypsum models, two circular cracked zones were observed in the test. The linear Mohr-Coulomb yield criterion was used with a constitutive model that showed linear softening and ideal residual plastic to analyze the elasto-plastic field of the enclosing rock mass around a deep tunnel. The results show that tunneling causes a maximum stress zone to appear between an elastic and plastic zone in the surrounding rock. The zonal disintegration phenomenon is analyzed by considering the stress-strain state of the rock mass in the vicinity of the maximum stress zone. Creep instability failure of the rock due to the development of the plastic zone, and transfer of the maximum stress zone into the rock mass, are the cause of zonal disintegration. An analytical criterion for the critical depth at which zonal disintegration can occur is derived. This depth depends mainly on the character and stress concentration coefficient of the rock mass.
文摘Design and construction of engineering structures in geomaterials with block-in-matrix texture(referred as bimrock) such as conglomerates,breccias and agglomerates are challenging tasks for engineers.When dealing with these materials in important structures such as open pits with high walls and pillars of deep underground mines,understanding the complete stress-strain behavior,including post-peak region,is a formidable yet crucial engineering practice.To study the post-peak behavior of bimrocks,artificial specimens were fabricated with a mixture of rock blocks and a cementing agent.All the experiments were conducted under uniaxial compression using a servo-control testing machine.The results show that the specimens with the highest block proportion(around 90% by mass) showed a small decrease in stress with strain increment in the post-peak region.The specimens with lower block proportions were characterized by an approximately steep fall in stress and following to residual stress.Based on the study,it is inferred that all the artificial specimens undergo post-failure deformation and the type of post behavior depends on rock block proportions.
基金partially supported by the National Natural Science Foundation of China(91955210,41625016,and 41888101)。
文摘Collisional orogens form when tectonic forces amalgamte fragments of Earth’s continental lithosphere.The sutures between individual fragments,or terranes,are potential sites of weakness that facilitate subsequent continental breakup.Therefore,the lithospheric architecture of collisional orogens provides key information for evaluating the long-term evolution of the continental interior:for example,the South China Block(SCB),where the tectonic history is severely obscured by extensive surface deformation,magmatism,and metamorphism.Using new passive-source seismic models,we show a contrasting seismic architecture across the SCB,with three prominent crustal dipping structures across the Jiangnan Orogen.Combined with constraints from multi-disciplinary regional geophysical datasets,these pronounced dipping patterns are interpreted as relict wedge-like lithospheric deformation zones initiated in the fossil collisions that assembled the Yangtze Block and the SCB.The overall trend of these tectonic wedges implies successive crustal growth along paleo-continental margins and is indicative of northward subduction and docking of accretional terranes.In contrast,no such dipping structures are preserved in the Cathaysia Block,indicating a weak and reorganized lithosphere.The variations in the deformation responses across the SCB reflect the long-term modifications of the lithosphere caused by prolonged collision and extension events throughout the tectonic history of the SCB.Our results demonstrate the critical roles that suture zones played in the successive growth and evolution of the continental lithosphere.