期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
柴里煤矿二水平岩巷的工程地质问题探讨 被引量:1
1
作者 王四洋 钱勋 高建光 《中国煤田地质》 2001年第3期45-47,49,共4页
论证了柴里矿区现代地应力场为大地静力场型,指出地应力研究的工程意义,通过层位、实践、经济效益几方面的对比,指出三灰是二水平主干岩巷层位选择的最佳层位。
关键词 岩巷变形 地应力场类型 工程地质问题 煤矿
下载PDF
Numerical analysis of deformation and failure characteristics of deep roadway surrounding rock under static-dynamic coupling stress 被引量:24
2
作者 WU Xing-yu JIANG Li-shuai +3 位作者 XU Xing-gang GUO Tao ZHANG Pei-peng HUANG Wan-peng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期543-555,共13页
In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and a... In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and accidents induced by SDCS conditions,the safe and efficient production of coal mines is seriously threatened.Therefore,it is of great practical significance to study the deformation and failure characteristics of the roadway surrounding rock under SDCS.In this paper,the effects of different in-situ stress fields and dynamic load conditions on the surrounding rock are studied by numerical simulations,and the deformation and failure characteristics are obtained.According to the simulation results,the horizontal stress,vertical stress and dynamic disturbance have a positive correlation with the plastic failure of the surrounding rock.Among these factors,the influence of the dynamic disturbance is the most substantial.Under the same stress conditions,the extents of deformation and plastic failure of the roof and ribs are always greater than those of the floor.The effect of horizontal stresses on the roadway deformation is more notable than that of vertical stresses.The results indicate that for the roadway under high-stress conditions,the in-situ stress test must be strengthened first.After determining the magnitude of the in-situ stress,the location of the roadway should be reasonably arranged in the design to optimize the mining sequence.For roadways that are strongly disturbed by dynamic loads,rock supports(rebar/cable bolts,steel set etc.)that are capable of maintaining their effectiveness without failure after certain dynamic loads are required.The results of this study contribute to understanding the characteristics of the roadway deformation and failure under SDCS,and can be used to provide a basis for the support design and optimization under similar geological and geotechnical circumstances. 展开更多
关键词 static-dynamic coupling stress(SDCS) deep roadway surrounding rock stability numerical simulation roadway deformation plastic failure of surrounding rock
下载PDF
Deformation mechanism and excavation process of large span intersection within deep soft rock roadway 被引量:24
3
作者 LI Guofeng, HE Manchao, ZHANG Guofeng, TAO Zhigang Institute of Geotechnical Engineering, China University of Mining & Technology, Beijing 100083, China 《Mining Science and Technology》 EI CAS 2010年第1期28-34,共7页
The FLAC3D software was used to simulate and analyze numerically the displacement, stress and plastic zone distribu-tion characteristics of a large span intersection in a deep soft rock roadway after the surrounding r... The FLAC3D software was used to simulate and analyze numerically the displacement, stress and plastic zone distribu-tion characteristics of a large span intersection in a deep soft rock roadway after the surrounding rock was excavated. Our simula-tion results show that there are two kinds of dominating factors affecting roadway stability at points of intersection, one is the angle between horizontal stress and axial direction of the roadway and the other are the angles at the points of intersection. These results are based on a study we carried out as follows: first, we analyzed the failure mechanism of a large span intersection and then we built a mechanical model of a rock pillar at one of the points of intersection. At the end of this analysis, we obtained the failure characteristics of the critical parts on the large span intersection. Given these failure characteristics, we proposed a new supporting method, i.e., a Double-Bolt Control Technology (DBCT). By way of numerical simulation, DBCT can effectively control the deformation of the surrounding rock at the points of intersection in roadways. 展开更多
关键词 DEEP soft rock JUNCTION numerical simulation
下载PDF
Analysis of soft rock roadway deformation mechanism in Zhangshuanglou Mine 被引量:1
4
作者 顾士亮 《Journal of Coal Science & Engineering(China)》 2003年第1期38-41,共4页
On basis of ground stress surveying and analysis of physical nature and mechanics character of rock, the deformation mechanism of west main roadway in Zhangshuanglou Mine is studied. It is put forward that engineering... On basis of ground stress surveying and analysis of physical nature and mechanics character of rock, the deformation mechanism of west main roadway in Zhangshuanglou Mine is studied. It is put forward that engineering mechanics nature, infiltration of water and concentrated stress on pillar are the main factors to affect stability of the west main roadway. The overall thinking used to restore the roadway is raised. 展开更多
关键词 soft rock ROADWAY deformation mechanism floor heave
下载PDF
Surrounding rock control mechanism of deep coal roadways and its application 被引量:10
5
作者 Xie Shengrong Li Erpeng +3 位作者 Li Shijun Wang Jinguang He Chongchong Yang Yafeng 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第3期429-434,共6页
Aiming at the surrounding rock control problem of mining and preparation entries in Xingdong mine with large mining depth, and the comprehensive control countermeasures including high pre-stress cable truss system, th... Aiming at the surrounding rock control problem of mining and preparation entries in Xingdong mine with large mining depth, and the comprehensive control countermeasures including high pre-stress cable truss system, this study put forward powerful anchor support system and anchor cable adaption technology to surrounding rock deformation. Furthermore, the control measures possess the supporting performance with ‘‘primary rigid-following flexible-new rigid, and primary resistance-following yield-new resistance'', which suits deep roadway surrounding rock control. The mechanical model of truss anchor supporting roof beams was established, and the inverted arch deflection produced by the cable pre-stress with stress increment effect and roof beam deflection were obtained. And then the system working mechanism was illustrated. Finally, the surrounding rock support parameters were determined by means of comprehensive methods, and put into practice. The results show that surrounding rock deformation realized secondary stability after three months. The roadway sides convergence value was less than 245mm, and roof subsidence was less than 124mm. In addition, there was no expansion and renovation during service period. 展开更多
关键词 Deep coal roadway Truss system Inverted arch deflection Equivalent uniform load Powerful anchor support
下载PDF
Failure mechanism and supporting measures for large deformation of Tertiary deep soft rock 被引量:5
6
作者 Guo Zhibiao Wang Jiong Zhang Yuelin 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第1期121-126,共6页
The Shenbei mining area in China contains typical soft rock from the Tertiary Period. As mining depths increase, deep soft rock roadways are damaged by large deformations and constantly need to be repaired to meet saf... The Shenbei mining area in China contains typical soft rock from the Tertiary Period. As mining depths increase, deep soft rock roadways are damaged by large deformations and constantly need to be repaired to meet safety requirements, which is a great security risk. In this study, the characteristics of deformation and failure of typical roadway were analyzed, and the fundamental reason for the roadway deformation was that traditional support methods and materials cannot control the large deformation of deep soft rock. Deep soft rock support technology was developed based on constant resistance energy absorption using constant resistance large deformation bolts. The correlative deformation mechanisms of surrounding rock and bolt were analyzed to understand the principle of constant resistance energy absorption. The new technology works well on-site and provides a new method for the excavation of roadwavs in Tertiary deed soft rock. 展开更多
关键词 Tertiary deep soft rockFailure mechanism of large deformationConstant resistance and large deformationboltCountermeasures of constant resistancecontrol
下载PDF
Study of mechanical principle of floor heave of roadway driving along next goaf in fully mechanized sub-level caving face 被引量:7
7
作者 王卫军 侯朝炯 《Journal of Coal Science & Engineering(China)》 2001年第1期13-17,共5页
Abstract On the basis of analyzing floor strata mechanical circumstance of the roadway, the mechanical model was established. The relative displacement of roadway floor, narrow pillar floor coal mass and floor strata ... Abstract On the basis of analyzing floor strata mechanical circumstance of the roadway, the mechanical model was established. The relative displacement of roadway floor, narrow pillar floor coal mass and floor strata was calculated, the results showed that the high abutment pressure on coal mass beside the roadway was the main reason to lead to relative displacement of floor strata. And the roadway floor heave come mainly from three aspects. Firstly, the roadway floor strata is easily fractured by the stretch stress. Secondly, because the high abutment pressure is greater than the uniaxial compressive strength of floor strata, when the roadway floor strata are fractured, the coal mass floor strata at the same depth will be fractured, and broken rock will fluid into the open roadway. Thirdly, comparing with the coal mass floor, the roadway floor is relative ascending. 展开更多
关键词 floor heave roadway driving along next goaf in coal face with fully mechanized top coal caving mechanical principle
下载PDF
Deformation failure and countermeasures of deep tertiary extremely soft rock roadway in Liuhai coal mine 被引量:2
8
作者 Yang Jun Wang Dong +1 位作者 Shi Haiyang Xu Huichen 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第2期231-236,共6页
In view of failure phenomena with nonlinear large deformation including extensive damage,whole section destruction in short time,high rate of repair,most destruction forms occurred in the tertiary roadway of soft rock... In view of failure phenomena with nonlinear large deformation including extensive damage,whole section destruction in short time,high rate of repair,most destruction forms occurred in the tertiary roadway of soft rocks engineering in Liuhai mine,according to the methods of geological survey,theoretical analysis,numerical calculation and in-situ test,the composite failure mechanism of molecular expansion,tectonic stress,gravity stress and engineering deviatoric stress,faults and random joint in this area is analyzed deeply,then an coupling support of double-layer-truss is proposed.The research results show that the first wave of deformation energy was released by bolt-mesh-cable fixed into the roof,floor and two sides of the roadway.While the second wave of deformation energy was released through the interface function between double-layer-truss and the surrounding rock.The double-layer-truss that characterized by high strength,good integrity can absorb high deformation energy of surrounding rocks,which led to the uniform distribution of the stress.Engineering practice shows this technology has been successfully applied to control the deformation failure of the tertiary extremely soft rock roadway. 展开更多
关键词 Tertiary soft rock Deformation mechanism Coupling effect Deep
下载PDF
The principle of stability control of surrounding rock-bearing structures in high stress soft rock roadways 被引量:2
9
作者 WANG Wei-jun ZHU Yong-jian LI Shu-qing ZHANG Peng 《Journal of Coal Science & Engineering(China)》 2009年第1期24-27,共4页
Through the description of the deformational features of the surrounding rockaround high stress engineering soft rock roadways,the coupling stabilization principle ofinner and outer structures in surrounding rock was ... Through the description of the deformational features of the surrounding rockaround high stress engineering soft rock roadways,the coupling stabilization principle ofinner and outer structures in surrounding rock was put forward.The supporting principlesof high stress engineering soft rock roadway (high resistance and yielding support,timelysupport,high strength and high stiffness supports) were proposed,which were applied inengineering practices,and obtained better achievements. 展开更多
关键词 high stress engineering soft rock mass inner and outer structures high resistance and yielding support timely support
下载PDF
Study on destressing technology for a roadway driven along goaf in a fully mechanized top-coal caving face 被引量:4
10
作者 瞿群迪 《Journal of Coal Science & Engineering(China)》 2003年第1期33-37,共5页
Based on the deformation characteristics of the roadways driven along goaf in fully mechanized top coal caving faces, the author considers that it is the key to ensure the stability of surrounding rocks of roadway dri... Based on the deformation characteristics of the roadways driven along goaf in fully mechanized top coal caving faces, the author considers that it is the key to ensure the stability of surrounding rocks of roadway driven along goaf to control the deformation during the period affected by mining. Considering the characteristics of the roadway layout in fully mechanized top coal caving faces, a technical scheme of destressing is put forward and the destressing effect is analyzed by using the software of Universal Distinct Element Code 3 0(UDEC 3 0). 展开更多
关键词 fully mechanized top coal caving gob side entry driving roadway layout
下载PDF
An experimental study of a yielding support for roadways constructed in deep broken soft rock under high stress 被引量:7
11
作者 Lu Yinlong Wang Lianguo Zhang Bei 《Mining Science and Technology》 EI CAS 2011年第6期839-844,共6页
A rationally designed support for deep roadways excavated in broken soft rock under high stress was investigated. The deformation and failure characteristics and the mechanism of ''yielding support'' w... A rationally designed support for deep roadways excavated in broken soft rock under high stress was investigated. The deformation and failure characteristics and the mechanism of ''yielding support'' was studied for anchor bolts and cables. The rail roadway of the 2-501 working face in the Liyazhuang Mine of the Huozhou coal area located in Shanxi province was used for field trials. The geological conditions used there were used during the design phase. The new ''highly resistant, yielding'' support system has a core of high strength, yielding bolts and anchor cables. The field tests show that this support system adapts well to the deformation and pressure in the deep broken soft rock. The support system effectively controls damage to the roadway and ensures the long term stability of the wall rock and safe production in the coal mine. This provides a remarkable economic and social benefit and has broad prospects for fur- ther application. 展开更多
关键词 High stress Broken soft rock Roadways Yielding support Yielding anchor bolt
下载PDF
Stability control of surrounding rocks for a coal roadway in a deep tectonic region 被引量:16
12
作者 Xiao Tongqiang Wang Xiangyu Zhang Zhigao 《International Journal of Mining Science and Technology》 SCIE EI 2014年第2期171-176,共6页
In order to effectively control the deformation and failure of surrounding rocks in a coal roadway in a deep tectonic region, the deformation and failure mechanism and stability control mechanism were studied. With su... In order to effectively control the deformation and failure of surrounding rocks in a coal roadway in a deep tectonic region, the deformation and failure mechanism and stability control mechanism were studied. With such methods as numerical simulation and field testing, the distribution law of the displacement, stress and plastic zone in the surrounding rocks was analyzed. The deformation and failure mechanisms of coal roadways in deep tectonic areas were revealed: under high tectonic stress, two sides will slide along the roof or floor; while the plastic zone of the two sides will extend along the roof or floor,leading to more serious deformation and failure in the corner of two sides and the bolt supporting the corners is readily cut off by the shear force or tension force. Aimed at controlling the large slippage deformation of the two sides, serious deformation and failure in the corners of the two sides and massive bolt breakage, a ‘‘controlling and yielding coupling support'' control technology is proposed. Firstly, bolts which do not pass through the bedding plane should be used in the corners of the roadway, allowing the two sides to have some degree of sliding to achieve the purpose of ‘‘yielding'' support, and which avoid breakage of the bolts in the corner. After yielding support, bolts in the corner of the roadway and which pass through the bedding plane should be used to control the deformation and failure of the coal in the corner. ‘‘Controlling and yielding coupling support'' technology has been successfully applied in engineering practice, and the stability of deep coal roadway has been greatly improved. 展开更多
关键词 Tectonic stress Coal roadway Bedding plane Controlling Yielding coupling support
下载PDF
Investigation into the deformation of a large span roadway in soft seams and its support technology 被引量:5
13
作者 Fu Jianqiu Feng Chao Shi Jianjun 《Mining Science and Technology》 EI CAS 2011年第4期531-535,共5页
We investigated the deformation failure mechanism of surrounding rock from the aspect of engineering support for a roadway in seams with soft roofs and soft floors and observed the large displacement of the roadway in... We investigated the deformation failure mechanism of surrounding rock from the aspect of engineering support for a roadway in seams with soft roofs and soft floors and observed the large displacement of the roadway in these soft seams.The result shows that the deformation area is quite large,and settlement of the roof is evident and displacement of the side walls is also obvious.We considered rock bolt-cable coupling for roadway support in seams with soft roofs and floors,in which the cable should be fixed at key positions.As well,we designed an optimal scheme to support a roadway in soft seams of the Shizuishan Second Mine in Ningxia,China.Field monitoring results show that bolt-cable coupling support has achieved the aims of roadway stability control and minimizes deformation. 展开更多
关键词 Seams with soft roofs and floors Roadway deformation Bolt-cable coupling supportField monitoring
下载PDF
Experimental study on the bolt–cable combined supporting technology for the extraction roadways in weakly cemented strata 被引量:14
14
作者 Meng Qingbin Han Lijun +3 位作者 Sun Jingwu Min Fengqing Feng Wei Zhou Xing 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第1期113-119,共7页
Aiming at the characteristics of the poor steady ability, the short stable time and severe deformation behavior of weakly cemented soft surrounding rock around extraction roadway, a bolt–cable combined supporting tec... Aiming at the characteristics of the poor steady ability, the short stable time and severe deformation behavior of weakly cemented soft surrounding rock around extraction roadway, a bolt–cable combined supporting technology was proposed. Numerical simulation was performed by using FLAC3 D software to study the effects of different supporting systems. The simulation result proves that those supporting systems have good practical values. Based on real-time monitoring and analysis of the deformation of surrounding rock and the stress of supporting structure, real time information of deformation of surrounding rock and stress state of supporting structure of extraction roadway within weakly cemented strata was obtained. Monitoring results show that large deformation and failure of surrounding rock of extraction roadway within weakly cemented strata can be effectively controlled by the bolt–cable combined supporting technology, which ensures the long-term stability and safety of surrounding rock and supporting structure. 展开更多
关键词 Weakly cemented strataExtraction roadwayBolt-cable combined supporting technologyReal-time monitoring
下载PDF
Study of dynamic pressure roadway supporting scheme under condi- tion of thick composite roof 被引量:3
15
作者 Wei-Jun WANG Li-Qiang LUO Wei-Jian YU Hai WU Yan-Si QU 《Journal of Coal Science & Engineering(China)》 2013年第2期119-125,共7页
This paper analyzed the strata behaviors of solid-coal roadway, gob-side entry driving and deformation law of surrounding rock in depth under high stress and thick composite roof based on the dynamic pressure roadway ... This paper analyzed the strata behaviors of solid-coal roadway, gob-side entry driving and deformation law of surrounding rock in depth under high stress and thick composite roof based on the dynamic pressure roadway as engineering background in Fengcheng mining area, Jiangxi province. The results, both field measurement and numerical simulation show that gob-side entry driving results the deformation of coal roadway main wall, however, entity-coal roadway driving results deformation of main roof and floor. The maintenance state of gob-side entry driving is better than entity-coal roadway, this situation is relevant to thick composite roof layered and easy collapse characteristics. At the same time, this paper put fox'ward and proved proper dynamic pressure roadway supporting scheme under the surrounding rock condition and stress environment. 展开更多
关键词 thick composite roof dynamic pressurized roadway high stress surrounding rock control
下载PDF
Control technology and coordination deformation mechanism of rise entry group with high ground stress 被引量:4
16
作者 Li Qingfeng Zhu Quanqu 《International Journal of Mining Science and Technology》 SCIE EI 2012年第3期429-435,共7页
Based on engineering practices of Wuyang Coal Mine, we carried out X-ray diffract researches on No. 3 coal; and the rocks of its roof and floor by XRD meter, and simulated the interactive effect of the surrounding roc... Based on engineering practices of Wuyang Coal Mine, we carried out X-ray diffract researches on No. 3 coal; and the rocks of its roof and floor by XRD meter, and simulated the interactive effect of the surrounding rock deformation by FLAC2DS.0 numerical simulation software under the condition of different tunneling method of multimine roadway in parallel. The internal structures of the surrounding rocks of 76 belt roadway were monitored by borehole observation instruments: and then, we analyzed the reason of fhilure and deformation of surrounding rocks of several rise entry, and proposed the technical mea- sures for controlling interactive effect of several rise entry surrounding rock deformation at last. For the thickness seam rise roadway, two conclusions were drawn: one is that the co-deformation among roadway groups mainly reflect on that both shear failure and deformation in coal pillar among roadways have decreased the width of pillar core region and clamping action of coal pillar to roof strata, increased the actual span of roof strata, intensified the flexural failure of roof strata and prized the bed separation of roof deep rock strata. The other conclusion is that the factors controlling the interactive deformation among roadways is obvious when appropriate re-adjustment in construction sequence of the tunneling of multimine parallel roadways because the construction sequence among roadways also has great effects on deformation of the surrounding rock in roadway. 展开更多
关键词 Several rise entryCoordination deformationNumerical simulationConstruction sequence
下载PDF
Surrounding rock deformation regularity of roadway under extremely complicated geological conditions in deep mine and its control
17
作者 刘长友 何卓军 万志军 《Journal of Coal Science & Engineering(China)》 2003年第1期12-16,共5页
By combining the practices of deep mine mining in Changguang Mine field and using the Universal Distinct Element Code 3 0(UDEC3 0) numerical computing method, the distribution characteristics of deformation field and ... By combining the practices of deep mine mining in Changguang Mine field and using the Universal Distinct Element Code 3 0(UDEC3 0) numerical computing method, the distribution characteristics of deformation field and stress field as well as the surrounding rock deformation regularity of soft rock roadway are analyzed under extremely complicated geological conditions, a technical principle of bolting to control the surrounding rock of roadway is put forward. And also using a dynamic control for surrounding rocks designing method, the supporting parameters and implement plan are rationally determined. The experimental tests have obtained a good controlling result of surrounding rock. 展开更多
关键词 deep mine extremely complicated geological condition surrounding rock deformation dynamic controlling design
下载PDF
THE RELATION BETWEEN THE CHAIN PILLAR WIDTH AND THE SURROUNDING ROCK DEFORMATION OF ROADWAY
18
作者 郭育光 陆士良 《Journal of China University of Mining and Technology》 1992年第1期1-10,共10页
Based on the analysis and research into ground pressure behavior law and surrounding rock deformation of a large number of roadways affected by mining activity,this paper proposed a relation between the surrounding ro... Based on the analysis and research into ground pressure behavior law and surrounding rock deformation of a large number of roadways affected by mining activity,this paper proposed a relation between the surrounding rock deformation during mining ,the surrounding rock deformation rate during stable stage of mining and the chain pillar width. Moreover,it established the relation between the total amount of surrounding rock deformation during service period of roadway and the chain pillar width,which provides a principal basis for choosing the chain pillar width. 展开更多
关键词 ROADWAY surrounding rock deformation chain pillar width
下载PDF
A study of support strategies in deep soft rock:The horsehead crossing roadway in Daqiang Coal Mine 被引量:14
19
作者 Guo Zhibiao Yang Xiaojie +2 位作者 Bai Yunpeng Zhou Feng Li Erqiang 《International Journal of Mining Science and Technology》 SCIE EI 2012年第5期665-667,共3页
Geomechanics in deep mines becomes more complex and structural support in soft rock can be very difficult.Highly stressed soft rock subject to expansion deformation is particularly difficult to control.The Tiefa Coal ... Geomechanics in deep mines becomes more complex and structural support in soft rock can be very difficult.Highly stressed soft rock subject to expansion deformation is particularly difficult to control.The Tiefa Coal Industry Group Daqiang Coal Mine is used as an example.A ventilation shaft,à550 horsehead,is located in tertiary soft rock.Analysis of the reasons for deformation shows an intumescent rock,which is easily damaged.Field observations and theoretical analysis led to a design capable of stabilizing the rock.A combination of spray,anchors,anchor bolts,and soft corner coupled truss supports allowed the deformation to be controlled.This provides a model for similar designs when support of a horsehead roadway is required. 展开更多
关键词 Deep well Soft rock Horsehead Deformation mechanical mechanism Coupling support
下载PDF
Catastrophe mechanism and disaster countermeasure for soft rock roadway surrounding rock in Meihe mine 被引量:5
20
作者 Yu Yang Zhu Caikun +2 位作者 Chong Deyu Liu Yang Li Sichao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第3期407-413,共7页
The soft rock's heterogeneity and nonlinear mechanical behavior cause extremely difficult maintenance on the soft rock roadway. Aiming at the asymmetric deformation and destruction phenomenon appearing after excav... The soft rock's heterogeneity and nonlinear mechanical behavior cause extremely difficult maintenance on the soft rock roadway. Aiming at the asymmetric deformation and destruction phenomenon appearing after excavating and supporting the 7101 air return way in Meihe mine, this paper comprehensively adopted a variety of methods to analyze the roadway surrounding rock deformation rule, obtaining the roadway surrounding rock stress and plastic zone distribution rule under no supporting condition and the roadway surrounding rock deformation features under original symmetric supporting condition.Furthermore, this paper revealed the catastrophe mechanism, and proposed the concept of ‘‘weak structure'' and the disaster countermeasure of ‘‘overall stabilizing the roadway and strengthening the support of weak structure''. The industrial test shows that the disaster control technology can realize the coordination deformation of the supporting structure and roadway surrounding rock, thus significantly controlling the deformation of roadway surrounding rock. 展开更多
关键词 Soft rockAsymmetric Catastrophe Theoretical analysis Numerical simulation Weak structure
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部