期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
山西芦芽山自然保护区岩燕的迁徙和繁殖研究 被引量:3
1
作者 赵爱生 《野生动物学报》 2014年第2期200-204,共5页
2010~ 2012年4~11月,在山西芦芽山自然保护区对岩燕种群的迁徙、繁殖和生活习性进行了观察研究.结果表明:岩燕在本区为夏候鸟,最早迁入本区为4月28日,最晚迁出为11月2日.岩燕在本区的季节迁徙年间相差2~3d,居留期相对稳定.繁殖前遇... 2010~ 2012年4~11月,在山西芦芽山自然保护区对岩燕种群的迁徙、繁殖和生活习性进行了观察研究.结果表明:岩燕在本区为夏候鸟,最早迁入本区为4月28日,最晚迁出为11月2日.岩燕在本区的季节迁徙年间相差2~3d,居留期相对稳定.繁殖前遇见率为1.5只/km,繁殖后遇见率为2.1只/km.繁殖期为5~7月,最早营巢期为5月17日,大量岩燕的营巢时间为5月下旬.巢营于临近河流、湿地附近的岩壁和土崖洞穴中.雌雄鸟共同营巢,营巢期8~9d.巢呈碗状,以少量细草茎叶为框架,由大量苔藓、地衣、泥土和唾液浇筑而成,十分结实和精致.筑好巢后1~2d开始产卵,最早产卵期为5月28日,日产1枚,窝卵数3~5枚,产齐卵的第二天开始孵卵,孵卵由雌鸟承担,孵化期14 ~ 15 d,孵化率为93.3%.巢内育雏期19 ~20 d,雌雄鸟共同育雏.此研究结果对自然保护区开展鸟类资源监测和科学保护提供一定依据.岩燕主要以昆虫为食,特别是在育雏时期,亲鸟喂育幼鸟的食物全部为昆虫类,所以岩燕对湿地周围的农林生产很有好处,应予以保护. 展开更多
关键词 岩燕 迁徙 繁殖研究 山西芦芽山自然保护区
下载PDF
Multiple-aged granitoids and related tungsten-tin mineralization in the Nanling Range, South China 被引量:50
2
作者 CHEN Jun WANG RuCheng +2 位作者 ZHU JinChu LU JianJun MA DongSheng 《Science China Earth Sciences》 SCIE EI CAS 2013年第12期2045-2055,共11页
The Nanling metallogenic belt in South China is characterized by well-developed tungsten-tin mineralization related to multi- ple-aged granitoids. This belt is one of the 5 key prospecting and exploration areas among ... The Nanling metallogenic belt in South China is characterized by well-developed tungsten-tin mineralization related to multi- ple-aged granitoids. This belt is one of the 5 key prospecting and exploration areas among the 19 important metallogenic tar- gets in China. Important progress has been made in recent years in understanding the Nanling granitoids and associated miner- alization, and this paper introduces the latest major findings as follows: (1) there exists a series of Caledonian, Indosinian, and Yanshanian W-Sn-bearing granites; (2) the Sn-bearing Yanshanian granites in the Nanling Range form an NE-SW trending aluminous A-type granite belt that stretches over 350 km. The granites typically belong to the magnetite series, and dioritic micro-granular enclaves with mingling features are very common; (3) the Early Yanshanian Sn- and W-bearing granites pos- sess different petrological and geochemical features to each other: most Sn-bearing granites are metaluminous to weakly per- aluminous biotite (hornblende) granites, with zircon tHe(t) values of ca. -2 to -8, whereas most W-bearing granites are peralu- minous two-mica granites or muscovite granites with CHf(t) values of ca. -8 to -12; (4) based on the petrology and geochemis- try of the W-Sn-bearing granites, mineralogical studies have shown that common minerals such as titanite, magnetite, and bio- tite may be used as indicators for discriminating the mineralizing potential of the Sn-bearing granites. Similarly, W-bearing minerals such as wolframite may indicate the mineralizing potential of the W-bearing granites. Future studies should be fo- cused on examining the internal relationships between the multiple-aged granites in composite bodies, the metallogenic pecu- liarities of multiple-aged W-Sn-bearing granites, the links between melt evolution and highly evolved ore-bearing felsic dykes, and the connections between granite domes and mineralization. 展开更多
关键词 Nanling Range tungsten-bearing granites tin-bearing granites mineralizing potential ore-forming peculiarities
原文传递
Petrogenesis of early Yanshanian highly evolved granites in the Longyuanba area,southern Jiangxi Province:Evidence from zircon U-Pb dating,Hf-O isotope and whole-rock geochemistry 被引量:26
3
作者 TAO JiHua LI WuXian +1 位作者 LI XianHua CEN Tao 《Science China Earth Sciences》 SCIE EI CAS 2013年第6期922-939,共18页
Early Yanshanian(Jurassic) granitoids are widespread in the Nanling Range,South China.Whereas large granitic batholiths commonly crop out in the center of the Nanling Range(corresponding geographically to the central ... Early Yanshanian(Jurassic) granitoids are widespread in the Nanling Range,South China.Whereas large granitic batholiths commonly crop out in the center of the Nanling Range(corresponding geographically to the central and northern parts of Guangdong Province),many small stocks occur in the southern part of Jiangxi Province.Most of the small stocks are associated closely with economically significant rare-metal deposits(W,Sn,Nb,Ta).Here we report the results for biotite granites and two-mica granites from three Yanshanian stocks of the Longyuanba complex.LA-ICPMS U-Pb dating of zircon yields an age of 156.1±2.1 Ma for Xiaomubei biotite granite,and U-Pb zircon dating using SIMS yields an age of 156.7±1.2 Ma for Longyuanba-Chengjiang biotite granite and 156.4±1.3 Ma for Jiangtoudong two-mica granite.Biotite granites are silica-rich(SiO 2 =70%-79%),potassic(K 2 O/Na 2 O>1.9),and peraluminous(ASI=1.05-1.33).Associated samples are invariably enriched in Rb,Th,Pb and LREE,yet depleted in Ba,Nb,Sr,P and Ti,and their REE pattern shows a large fractionation between LREE and HREE((La/Yb) N =10.7-13.5) and a pronounced Eu negative anomaly(δEu=0.28-0.41).Two-mica granite samples are also silica-rich(SiO 2 =75%-79%),potassic(K 2 O/Na 2 O>1.2),and peraluminous(ASI=1.09-1.17).However,in contrast to the biotite granites,they are more enriched in Rb,Th,Pb and extremely depleted in Ba,Nb,Sr,P and Ti,and exhibit nearly flat((La/Yb) N =0.75-1.08) chondrite-normalized REE patterns characterized by strong Eu depletion(δEu=0.02-0.04) and clear tetrad effect(TE 1.3 =1.10-1.14).Biotite granites and two-mica granties have comparable Nd isotopic signatures,and their εNd(t) are concentrated in the 13.0 to 9.6 and 11.5 to 7.7 respectively.Their zircon Hf-O isotopes of both also show similarity(biotite granites:εHf(t)= 10.8-7.9,δ 18 O=7.98‰-8.89‰ and εHf(t)= 13.8 to 9.1,δ 18 O=8.31‰-10.08‰;two-mica granites:εHf(t)= 11.3 to 8.0,δ 18 O=7.91‰-9.77‰).The results show that both biotite and two-mica granites were derived mainly from sedimentary source rocks with a minor contribution from mantle-derived materials.In spite of some S-type characteristics,the biotite granites were formed by fractional crystallization of I-type magma and assimilation of peraluminous sedimentary rocks during their ascent to the surface.Therefore,they belong to highly fractionated I-type granites.Two-mica granites exhibit a tetrad effect in their REE patterns,but share the same isotopic features with the biotite granites,suggesting that they are highly fractionated I-type granites as well.Their Lanthanide tetrad effects may be attributed to the hydrothermal alteration by magmatic fluids that have suffered degassing at late stages.Granitic magmas undergoing fractional crystallization and wall-rock assilimation can generate highly evolved granites with no REE tetrad effect in the uni-phase system.However,in the late-stage of magmatic evolution in the multi-phase system(i.e.,magmatic-hydrothermal system),these magmas also can lead to the highly evolved granites exhibiting mew-shaped REE pattern characterized by tetrad effect as the consequence of melt-fluid and fluid-vapor fractionation,and the resultant autometasomatism.We thus suggest that the REE pattern exhibiting tetrad effect feature is an important indicator of rare metal mineralization in the early Yanshanian time in southern China,implying the metamorphism of the ore fluid. 展开更多
关键词 highly evolved tetrad effect granite early Yanshanian southern Jiangxi Province
原文传递
Petrogenetic contrastive studies on the Mesozoic early stage ore-bearing and late stage ore-barren granites from the southern Anhui Province 被引量:11
4
作者 YAN Jun HOU TianJie +6 位作者 WANG AiGuo WANG DeEn ZHANG DingYuan WENG WangFei LIU JianMin LIU XiaoQiang LI QuanZhong 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第11期1920-1941,共22页
Yanshanian magmatisms are intensive in the southern Anhui Province and can be divided into early (152-137 Ma) and late (136-122 Ma) stages. A Yanshanian granitic zone was found to crop out along Qingshan to Changg... Yanshanian magmatisms are intensive in the southern Anhui Province and can be divided into early (152-137 Ma) and late (136-122 Ma) stages. A Yanshanian granitic zone was found to crop out along Qingshan to Changgai areas in the Ttmxi district in Field investigation which has a genetic link with molybdenum multiple metal mineralization. To be a representative syenitic granite in the southern Anhui Province, the Huangshan pluton has not been found so far to have any genetic link with mineralization. Zircon LA-ICP-MS dating indicate that the four granitic bodies from the Qingshan-Changgai zone have concurrent formed ages from 140~:4 to 141~2 Ma, belonging to the Yanshanian early stage magmatism. However, the Huangshan granite is dated to be 12912 Ma, belonging to the Yanshanian late stage magmatism. The Qingshan-Changgai granites show high SiO2 and K20 contents, low P205 contents and middle A12O3 contents and are high-K calc-alkaline series metaluminum I-type granite. These rocks are characterized by enrichments in the large ion lithophile elements and light rare earth elements (REE), depletions in the high field-strength elements, and middle degree negative anomalies of Eu, geochemical features of arc or continent crustal derived magma affinities. These rocks have 87Sr/StSr(t) ratios from 0.7120 to 0.7125,εNd(t) values from -7.24 to -4.38 and zircon εHf(t) values of -4.4 to 6.7, similar to that of the coeval ore-bearing granodiorites in the southern Anhui Province. Integrated geochemical studies indicate that the Yanshanian ore-bearing granodiorites were formed by partial melting of the Meso-Neoproterozoic accreted thickened low crust. Meanwhile, the Qingshan-Changgai granites were formed through a AFC process of plagioclase+amphibole+Shangxi Group of magmas that formed the ore-bearing granodiorites. The Huangshan granites are characterized by high SiOz and K2O contents, moderate Al2O3 contents, seagull shape REE distributed pattern and distinct Eu negative abnormities. Comparing with the Qingshan-Changgai granites, the Huangshan granites show more Ba, Sr, P, and Ti negative abnormities with no Nb and Ta depletions and are high-K calc-alkaline series metaluminum A-type granite, εHr(t) values of the Huangshan granites are from -6.6 to -1.2, similar to that of the early stage ore-bearing granodiorites, indicating that they were also formed by anatexis of the Meso-Neoproterozoic accreted crust, but their magma sources might be residual granulitic crust which ever underwent Yanshanian early stage I-type intermediate-acid magma extraction. Comparing studies on the two stages granites indicate that the early stage granites derived from a relative thickened low crust under a lower temperature condition. Their magma sources were Meso-Neoproterozoic accreted crust which enriched in ore-forming materials and further became more enriched through processes of magma AFC evolution. However, the late stage A-type granites originated from relative shallow crust under a higher temperature condition. Their magma source was depleted in ore-forming materials due to the early stage magma extraction and thus had weak ore-forming capacity. From early to late stage, the magmatisms tectonic setting translated from post-orogenic to anorogenic and the later corresponded to a back-arc extensional setting as increase of the slab subducted angle of the Paleo-Pacific plate. 展开更多
关键词 YANSHANIAN Granite Low crust Ore-bearing magmatic rock The south Anhui Province Jiangnan orogenic belt
原文传递
Geological characteristics and mineralization setting of the Zhuxi tungsten(copper) polymetallic deposit in the Eastern Jiangnan Orogen 被引量:25
5
作者 CHEN GuoHua SHU LiangShu +2 位作者 SHU LiMin ZHANG Cheng OUYANG YongPeng 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第4期803-823,共21页
The Zhuxi ore deposit is a super-large scheelite(copper) polymetallic deposit discovered in recent years. It grew above copper/tungsten-rich Neoproterozoic argilloarenaceous basement rocks and was formed in the contac... The Zhuxi ore deposit is a super-large scheelite(copper) polymetallic deposit discovered in recent years. It grew above copper/tungsten-rich Neoproterozoic argilloarenaceous basement rocks and was formed in the contact zone between Yanshanian granites and Carboniferous-Permian limestone. Granites related to this mineralization mainly include equigranular, middle- to coarse-grained granites and granitic porphyries. There are two mineralization types: skarn scheelite(copper) and granite scheelite mineralization. The former is large scale and has a high content of scheelite, whereas the latter is small scale and has a low content of scheelite. In the Taqian-Fuchun Basin, its NW boundary is a thrust fault, and the SE boundary is an angular unconformity with Proterozoic basement. In Carboniferous-Permian rock assemblages, the tungsten and copper contents in the limestone are both very high. The contents of major elements in granitoids do not differ largely between the periphery and the inside of the Zhuxi ore deposit. In both areas, the values of the aluminum saturation index are A/CNK>1.1, and the rocks are classified as potassium-rich strongly peraluminous granites. In terms of trace elements, compared to granites on the periphery of the Zhuxi ore deposit, the granites inside the Zhuxi ore deposit have smaller d Eu values, exhibit a significantly more negative Eu anomaly, are richer in Rb, U, Ta, Pb and Hf, and are more depleted in Ba, Ce, Sr, La and Ti, which indicates that they are highly differentiated S-type granites with a high degree of evolution. Under the influence of fluids, mineralization of sulfides is evident within massive rock formations inside the Zhuxi ore deposit, and the mean SO_3 content is 0.2%. Compared to peripheral rocks, the d Eu and total rare earth element(REE) content of granites inside the Zhuxi ore deposit are both lower, indicating a certain evolutionary inheritance relationship between the granites on the periphery and the granites inside the Zhuxi ore deposit. For peripheral and ore district plutons, U-Pb zircon dating shows an age range of 152–148 Ma. In situ Lu-Hf isotope analysis of zircon in the granites reveals that the calculated e_(Hf)(t) values are all negative, and the majority range from -6 to -9. The T_(DM2) values are concentrated in the range of 1.50–1.88 Ga(peak at 1.75 Ga), suggesting that the granitic magmas are derived from partial melting of ancient crust. This paper also discusses the metallogenic conditions and ore-controlling conditions of the ore district from the perspectives of mineral contents, hydrothermal alteration, and ore-controlling structures in the strata and the ore-bearing rocks. It is proposed that the Zhuxi ore deposit went through a multistage evolution, including oblique intrusion of granitic magmas, skarn mineralization, cooling and alteration, and precipitation of metal sulfides. The mineralization pattern can be summarized as "copper in the east and tungsten in the west, copper at shallow-middle depths and tungsten at deep depths, tungsten in the early stage and copper in the late stage". 展开更多
关键词 Tungsten(copper) polymetallic deposit Late Mesozoic granites Carboniferous-Permian carbonate rocks Skarn mineralization Zhuxi ore deposit Eastern Jiangnan Orogen
原文传递
Mineralogical feature and geological significance of muscovites from the Longyuanba Indosinian and Yanshannian two-mica granites in the eastern Nanling Range 被引量:4
6
作者 TAO JiHua LI WuXian +1 位作者 CAI YuanFeng CEN Tao 《Science China Earth Sciences》 SCIE EI CAS 2014年第6期1150-1157,共8页
Emplacement P-T condition estimations using granites are important for understanding metamorphic and erosional processes of orogenic belt.Granites are widespread in South China and a majority of them are peraluminous.... Emplacement P-T condition estimations using granites are important for understanding metamorphic and erosional processes of orogenic belt.Granites are widespread in South China and a majority of them are peraluminous.Particularly,over 91%of the Indosinian granites exposed in the region are peraluminous in composition.It is extremely hard to determine the pressure of intrusion of these peraluminous granites due to the absence of amphibole,a good mineral barometer commonly identified in metaluminous granites.Muscovite is a common mineral in peraluminous granites,certain kind of it could be used as a mineral barometer to constrain the emplacement pressure of peraluminous granites.In this paper,results of petrographic and geochemical studies of muscovites from the Indosinian and early Yanshanian two-mica granites at the Longyuanba in the eastern Nanling Range are reported.Based on petrographic studies,the primary muscovite can be discriminated from the secondary muscovites.Muscovites from the Indosinian two-mica granites are enriched in Ti,Al,Mg,and Na,and depleted in Fe and Mn.Geochemically,these muscovites were considered as primary,whereas those from the Yanshanian two-mica granites fall into the area of secondary muscovite on discrimination diagrams.Barometer estimations show that pressures calculated for primary muscovites are accurate,but those calculated for secondary muscovites are overestimated.The average pressure of emplacement of the Longyuanba Indosinian two-mica granites is 5.9 kbar,corresponding to^19 km in depth,suggesting that the Indosinian granitic magmas were probably generated by partial melting of a thickened crust root in a compressional tectonic setting. 展开更多
关键词 emplacement depth MUSCOVITE peraluminous granites Longyuanba complex Nanling Range
原文传递
Middle Devonian-Tournaisian rocks and biota on Hainan Island,South China
7
作者 ZHANG RenJie YAO HuaZhou +1 位作者 WANG JianXiong TU Bing 《Science China Earth Sciences》 SCIE EI CAS 2013年第11期1934-1941,共8页
On the basis of new paleontological data,the sequence and distributions of the Middle Devonian-Tournaisian rocks on Hainan Island have been sorted out for the first time.The Devonian rocks include the Middle Devonian ... On the basis of new paleontological data,the sequence and distributions of the Middle Devonian-Tournaisian rocks on Hainan Island have been sorted out for the first time.The Devonian rocks include the Middle Devonian Jinbo Formation and the Upper Devonian Changjiang Formation,which are distributed in northwestern Hainan Island.The Jinbo Formation is represented by631 m of littoral facies deposits,and was intruded by the Yanshanian granite in the base.The presence of chitinozoans Eisenackitina caster,Funsochitina pilosa,and Lagenochitina amottensis indicates the Givetian in age.The Changjiang Formation is made up of 140 m of neritic facies rocks,and contains the Famennian conodonts Palmatolepis gracilis sigmoidalis,Polygnathus germanus,and corals Cystophrentis kalaohoensis.The Devonian-Tournaisian transition beds,the lower part of the Jishi Formation,are composed of 61–129 m sandstone and siltstone,with gastropods Euomphalus spp.and brachiopods,and marked by conglomerate with the underlying Devonian rocks.The middle-upper part of the Tournaisian Jishi Formation consists of 100–251 m clastic and carbonate rocks,containing abundant corals Pseudoularinia irregularis,conodonts Siphonodella isosticha,trilobites Weberiphillipsia linguiformis,and brachiopods.On the basis of the occurrence of Xinanosprifer flabellum and Homotoma sp.,the Nanhao Formation in southern Hainan Island is now regarded as the Lower Silurian,instead of the previously designated Lower Carboniferous.It is confirmed that no Carboniferous rocks occurred in the area south to the Gancheng-Wanning Fault. 展开更多
关键词 Devonian-Tournaisian ROCKS BIOTA Hainan Island China
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部