期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合学习模型的岩石光谱特征自动分类 被引量:6
1
作者 贺金鑫 任小玉 +3 位作者 陈圣波 熊玥 肖志强 周孩 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2021年第1期141-144,共4页
岩石光谱综合反映了岩石的物理化学性质、成分及其结构构造。岩石光谱数据已被应用于岩石分类的研究,但是不同于矿物光谱,岩石光谱并无标准数据库,且受较多干扰因素影响,例如矿物组分、结构构造、化学成分、风化力度,测量仪器的误差等... 岩石光谱综合反映了岩石的物理化学性质、成分及其结构构造。岩石光谱数据已被应用于岩石分类的研究,但是不同于矿物光谱,岩石光谱并无标准数据库,且受较多干扰因素影响,例如矿物组分、结构构造、化学成分、风化力度,测量仪器的误差等。传统岩石光谱分类模型先是对岩石光谱进行预处理排除干扰,然后采用不同方法对部分光谱特征分析,以达到分类目的。但对光谱数据特征遗失较多,使得分类准确率低下且操作过程繁琐、效率不高。因此,建立一个简单、快速、准确的岩石光谱自动分类模型具有重要意义。机器学习能够对获得的所有数据进行学习,不存在遗漏,大大提高了分类精度,且是对原始数据直接操作,不需预处理,简化流程。为此,选取辽宁兴城地区作为研究区,采集了若干种典型岩石样本,利用美国ASD便携式光谱仪实测光谱,最终获得608条数据,依据岩石光谱特征分为三类进行研究。首先利用决策树(DT)及决策树的升级模型——随机森林(RF)对数据进行分类,但当数据噪音较大时随机森林容易陷入过拟合;因而利用对异常值不敏感的K-最近邻(KNN)建模,但KNN需要对每个样本都考虑,数据量大时计算量会很大,效率不高;所以通过支持向量机(SVM)来提升分类准确率。从实验结果可以看出,4种分类模型的准确率排序为:SVM>KNN>RF>DT。为进一步提高岩石光谱特征的自动分类精度,采取了融合多个不同模型的办法,即对不同模型的分类结果进行投票,选择投票最多的作为最后分类结果。由于硬投票可在一定程度上减少过拟合现象的发生,更加适合分类模型,所以利用硬投票法融合了RF、KNN与SVM三个机器学习模型,最终的分类准确率可达到99.17%。综上所述,基于融合学习模型进行岩石光谱特征自动分类是切实可行且准确高效的。 展开更多
关键词 岩石光谱分类 决策树 随机森林 K-最近邻 支持向量机 模型融合
下载PDF
Effect of Characteristic Spectral Lines on Rock Identification of LIBS
2
作者 Ke ZhiQuan Wang YangEn +2 位作者 Xu Yi Dong XiPu Zhou MaoHui 《Journal of Physical Science and Application》 2015年第4期296-308,共13页
The LIBS (Laser induced-breakdown spectroscopy) combined with BPNN (Back propagation neural network) was applied in rock sorting and distinguishing for 26 rock samples of 6 types. According to contents of major el... The LIBS (Laser induced-breakdown spectroscopy) combined with BPNN (Back propagation neural network) was applied in rock sorting and distinguishing for 26 rock samples of 6 types. According to contents of major elements in samples, we selected lines of Si, Al, Fe, K, Ca, Mg, Na, Ti and Mn. These lines of 9 elements composed three characteristic spectral models which were the WSLM (Wide spectral line model), the PM (Peak model) and the PRM (Peak ratio model). The first and the second characteristic spectral model were divided into 9 kinds, as follows: the characteristic spectrum with 1 element, the characteristic spectrum with 2 elements, we can deduce the rest from this and the last one has 9 elements. The third model was divided into 8 kinds which were using AI as reference element. We analysed spectrums of the three models by BPNN. Experimental results shown that whether sorting or distinguishing these samples, identification accuracies of the PM were more than that of the PRM overall, the same as the WSLM did to the PM. While the selected number of elements was 5, 6 or 7, the identification accuracy of the WSLM could reach more than 90%. Continuing to add the number of elements to improve identification accuracy was not very obvious. 展开更多
关键词 LIBS (Laser induced-breakdown spectroscopy) BPNN (Back propagation neural network) characteristic spectral model WSLM (Wide spectral line model).
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部