In order to understand the influence of brittleness and confining stress on rock cuttability,the indentation tests were carried out by a conical pick on the four types of rocks.Then,the experimental results were utili...In order to understand the influence of brittleness and confining stress on rock cuttability,the indentation tests were carried out by a conical pick on the four types of rocks.Then,the experimental results were utilized to take regression analysis.The eight sets of normalized regression models were established for reflecting the relationships of peak indentation force(PIF)and specific energy(SE)with brittleness index and uniaxial confining stress.The regression analyses present that these regression models have good prediction performance.The regressive results indicate that brittleness indices and uniaxial confining stress conditions have non-linear effects on the rock cuttability that is determined by PIF and SE.Finally,the multilayer perceptual neural network was used to measure the importance weights of brittleness index and uniaxial confining stress upon the influence for rock cuttability.The results indicate that the uniaxial confining stress is more significant than brittleness index for influencing the rock cuttability.展开更多
基金Project(51904333) supported by the National Natural Science Foundation of China。
文摘In order to understand the influence of brittleness and confining stress on rock cuttability,the indentation tests were carried out by a conical pick on the four types of rocks.Then,the experimental results were utilized to take regression analysis.The eight sets of normalized regression models were established for reflecting the relationships of peak indentation force(PIF)and specific energy(SE)with brittleness index and uniaxial confining stress.The regression analyses present that these regression models have good prediction performance.The regressive results indicate that brittleness indices and uniaxial confining stress conditions have non-linear effects on the rock cuttability that is determined by PIF and SE.Finally,the multilayer perceptual neural network was used to measure the importance weights of brittleness index and uniaxial confining stress upon the influence for rock cuttability.The results indicate that the uniaxial confining stress is more significant than brittleness index for influencing the rock cuttability.