期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
从岩石地质力学角度分析老顶的类别及控制
1
作者 李廷彦 《现代商贸工业》 2013年第22期190-190,共1页
煤层顶板分为伪顶,直接顶,老顶。伪顶较薄厚度在0.1m^0.2m;开采后很容易冒落;而直接顶开采后也容易冒落;老顶很厚且岩石坚硬开采后很难冒落。因此必须掌握老顶的活动规律,采取针对性的措施,才能控制和管理好顶板实现安全生产。
关键词 老顶类别及控制 岩石地质力学
下载PDF
A modified Hoek-Brown failure criterion considering the damage to reservoir bank slope rocks under water saturation-dehydration circulation 被引量:4
2
作者 WANG Xin-gang WANG Jia-ding +1 位作者 GU Tian-Feng LIAN Bao-qin 《Journal of Mountain Science》 SCIE CSCD 2017年第4期771-781,共11页
After water is impounded in a reservoir, rock mass in the hydro-fluctuation belt of the reservoir bank slope is subject to water saturation- dehydration circulation (WSDC). To quantify the rate of change of rock mec... After water is impounded in a reservoir, rock mass in the hydro-fluctuation belt of the reservoir bank slope is subject to water saturation- dehydration circulation (WSDC). To quantify the rate of change of rock mechanical properties, samples from the Longtan dam area were measured with uniaxial compression tests after different numbers (1, 5, 10, 15, and 20) of simulated WSDC cycles. Based on the curves derived from these tests, a modified Hock- Brown failure criterion was proposed, in which a new parameter was introduced to model the cumulative damage to rocks after WSDC. A case of an engineering application was analyzed, and the results showed that the modified Hock-Brown failure criterion is useful. Under similar WSDC-influenced engineering and geological conditions, rock mass strength parameters required for analysis and evaluation of rock slope stability can be estimated according to this modified Hoek-Brown failure criterion. 展开更多
关键词 Modified Hoek-Brown criterion Reservoir bank slope Hydro-fluctuation belt Water saturation-dehydration circulation DAMAGE
下载PDF
Measurement-while-drilling technique and its scope in design and prediction of rock blasting
3
作者 Rai Piyush Schunnesson Hakan +1 位作者 Lindqvist Per-Arne Kumar Uday 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期711-719,共9页
With rampant growth and improvements in drilling technology, drilling of blast holes should no longer be viewed as an arduous sub-process in any mining or excavation process. Instead, it must be viewed as an important... With rampant growth and improvements in drilling technology, drilling of blast holes should no longer be viewed as an arduous sub-process in any mining or excavation process. Instead, it must be viewed as an important opportunity to quickly and accurately measure the geo-mechanical features of the rock mass on-site, much in advance of the downstream operations. It is well established that even the slightest variation in lithology, ground conditions, blast designs vis-a-vis geologic features and explosives performance, results in drastic changes in fragmentation results. Keeping in mind the importance of state-of-the-art measurement-while-drilling (MWD) technique, the current paper focuses on integrating this technique with the blasting operation in order to enhance the blasting designs and results. The paper presents a preliminary understanding of various blasting models, blastability and other related concepts, to review the state-of-the-art advancements and researches done in this area. In light of this, the paper highlights the future needs and implications on drill monitoring systems for improved information to enhnnrp th~ hl^tin~ r^HIt~ 展开更多
关键词 Rock blasting Drill monitoring parameters Rock factor Drill rod vibrations
下载PDF
Mechanical Response of Saturated Geological Rock Mass under Tidal Force
4
作者 Liao Xin Liu Chunping Xie Lingjiang Shi Yun Wan Fei 《Earthquake Research in China》 2010年第4期423-431,共9页
In this paper, the mechanical response of saturated geological rock under tidal force is explored by poroelastic theory. First, we use the free energy formula of saturated rock under a tidal force to study the relatio... In this paper, the mechanical response of saturated geological rock under tidal force is explored by poroelastic theory. First, we use the free energy formula of saturated rock under a tidal force to study the relationships of pore pressure with stress, and stress with strain. Then we analyze the relationship between rock strain and tidal potential by the equilibrium differential equations of saturated rock under tidal force. Finally, we derive the physical relationship between the two parameters (pore pressure and tidal mean stress) of saturated rock and tidal potential. The relationship shows that:pore pressure is directly proportional with tidal potential, but tidal mean stress of saturated rock is inversely proportional with tidal potential. The ratio coefficient is related not only to the Lame coefficients of rock skeletons, but also to the Blot modulus. By using this model to analyze observational well water level of C-18 well which locates in Huili, Sichuan Province, the well level response coefficient (D) was estimated. This way, we derive the Skempton coefficient (B), the coefficient A and C which refer to the response coefficients of pore pressure and tidal stress to tidal potential respectively. Then we compare the differences among each coefficient in coupling and uncoupling conditions. It shows that for saturated rocks, the response of stress and pore pressure to earth tides is a product of coupling, and it is necessary to take into account the coupling effect when we study the mechanical response. The model will provide the basis not only for the study of mechanics and hydrodynamics of well-confined aquifer systems, and the mechanics of faulting under tidal force, but also for quantitative research of the triggering mechanism of tidal forces. 展开更多
关键词 Poroelastic theory Saturated geological rock mass Pore pressure Tidal stress Tidal potential
下载PDF
Tunnelling through weak and fragile rocks of Himalayas
5
作者 Goel R.K. 《International Journal of Mining Science and Technology》 SCIE EI 2014年第6期783-790,共8页
A considerable amount of tunnelling has been going on in India for various projects such as hydroelectric power, irrigation, roads and railways. Most of these projects are located in Himalayas, far away from the urban... A considerable amount of tunnelling has been going on in India for various projects such as hydroelectric power, irrigation, roads and railways. Most of these projects are located in Himalayas, far away from the urban areas. Tunnelling through weak and jointed rock masses such as the one in the Himalayas is a challenging task for the planners, designers, engineers and geologists because of high overburden, thickly vegetated surface, weak, poor and fragile rocks and highly varying geology with the presence of numerous small and big shear zones, faults, etc. Due to these reasons, various tunnelling problems have been faced in the past and are still being encountered. Failures and the problems may be regarded as challenges and opportunities for generating new knowledge base and thereby increasing self-reliance in tunnelling. The experiences of Himalayan tunnelling through weak and fragile rocks covering varying and mixed geology, understanding on tunnelling in squeezing ground conditions and applicability of TBM in Himalayas are presented. It has also been highlighted that the probe holes planning, drilling and monitoring shall be followed seriously to reduce the geological surprises. 展开更多
关键词 Varying geology Mixed geology Weak and fragile rocks Himalayan tunnelling Ground condition Squeezing
下载PDF
Soft rocks in Argentina
6
作者 Giambastiani Mauricio 《International Journal of Mining Science and Technology》 SCIE EI 2014年第6期883-892,共10页
Soft rocks are a still fairly unexplored chapter in rock mechanics. Within this category are the clastic sedimentary rocks and pyroclastic volcanic rocks, of low to moderate lithification (consolidation, cemen- tatio... Soft rocks are a still fairly unexplored chapter in rock mechanics. Within this category are the clastic sedimentary rocks and pyroclastic volcanic rocks, of low to moderate lithification (consolidation, cemen- tation, new formed minerals), chemical sedimentary rocks and metamorphic rocks formed by minerals witk Mohs hardness less than 3.5, such as limestone, gypsum, halite, sylvite, between the first and phyllites, graphitic schist, chloritic shale, talc, etc., among the litter. They also include any type Of rock that suffered alteration processes (hydrothermal or weathering). In Argentina the study of low-strength rocks has not received much attention despite having extensive outcrops in the Andes and great impact in the design criteria. Correlation between geomechanical properties (UCS, deformability) to physical index (porosity, density, etc.) has shown promising results to be better studied. There are many studies and engineering projects in Argentina in soft rock geological environments, some cited in the text (Chihuido dam, N. Kirchner dam, J. Cepernic Dam, etc.) and others such as International Tunnel in the Province of Mendoza (Corredor Bioceanico), which will require the valuable contribution from rock mechanics. The lack of consistency between some of the physical and mechanical parameters explored from studies in the country may be due to an insufficient amount of information and/or non-standardization of criteria for testing materials. It is understood that more and better academic and professional efforts in improv- ing techniques will result in benefits to the better understanding of the geomechanics of weak rocks. 展开更多
关键词 Soft rocks Argentine Tunnels Dams Rock parameters
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部