We developed an anisotropic effective theoretical model for modeling the elastic behavior of anisotropic carbonate reservoirs by combining the anisotropic self-consistent approximation and differential effective mediu...We developed an anisotropic effective theoretical model for modeling the elastic behavior of anisotropic carbonate reservoirs by combining the anisotropic self-consistent approximation and differential effective medium models.By analyzing the measured data from carbonate samples in the TL area,a carbonate pore-structure model for estimating the elastic parameters of carbonate rocks is proposed,which is a prerequisite in the analysis of carbonate reservoirs.A workflow for determining elastic properties of carbonate reservoirs is established in terms of the anisotropic effective theoretical model and the pore-structure model.We performed numerical experiments and compared the theoretical prediction and measured data.The result of the comparison suggests that the proposed anisotropic effective theoretical model can account for the relation between velocity and porosity in carbonate reservoirs.The model forms the basis for developing new tools for predicting and evaluating the properties of carbonate reservoirs.展开更多
Pore-structure poses great influence on the permeability and electrical property of tight sand reservoirs and is critical to the petrophysical research of such reservoirs.The uncertainty of permeability for tight sand...Pore-structure poses great influence on the permeability and electrical property of tight sand reservoirs and is critical to the petrophysical research of such reservoirs.The uncertainty of permeability for tight sands is very common and the relationship between pore- structure and electrical property is often unclear.We propose a new parameterδ,integrating porosity,maximum radius of connected pore-throats,and sorting degree,for investigating the permeability and electrical properties of tight sands.Core data and wireline log analyses show that this newδcan be used to accurately predict the tight sands permeability and has a close relation with electrical parameters,allowing the estimation of formation factor F and cementation exponent m.The normalization of the resistivity difference caused by the pore- structure is used to highlight the influence of fluid type on Rt,enhancing the coincidence rate in the Pickett crossplot significantly.展开更多
For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were c...For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity.展开更多
With a more complex pore structure system compared with clastic rocks, carbonate rocks have not yet been well described by existing conventional rock physical models concerning the pore structure vagary as well as the...With a more complex pore structure system compared with clastic rocks, carbonate rocks have not yet been well described by existing conventional rock physical models concerning the pore structure vagary as well as the influence on elastic rock properties. We start with a discussion and an analysis about carbonate rock pore structure utilizing rock slices. Then, given appropriate assumptions, we introduce a new approach to modeling carbonate rocks and construct a pore structure algorithm to identify pore structure mutation with a basis on the Gassmann equation and the Eshelby-Walsh ellipsoid inclusion crack theory. Finally, we compute a single well's porosity using this new approach with full wave log data and make a comparison with the predicted result of traditional method and simultaneously invert for reservoir parameters. The study results reveal that the rock pore structure can significantly influence the rocks' elastic properties and the predicted porosity error of the new modeling approach is merely 0.74%. Therefore, the approach we introduce can effectively decrease the predicted error of reservoir parameters.展开更多
Hydrophilic characteristics of rocks are affected by their microscopic pore structures,which clearly change after water absorption.Water absorption tests and scanning electron microscopic(SEM) experiments on rock sa...Hydrophilic characteristics of rocks are affected by their microscopic pore structures,which clearly change after water absorption.Water absorption tests and scanning electron microscopic(SEM) experiments on rock samples,located at a site in Tibet,China,were carried out Changes of rock pore structures before and after water absorption were studied with the distribution of pore sizes and fractal characteristics of pores.The results show that surface porosities,fractal dimensions of pores and the complexity of pore structures increased because the number of new small pores produced increased or the original macropore flow channels were expanded after rocks absorbed water.There were points of inflection on their water absorption curves.After water absorption of other rocks,surface porosities and fractal dimensions of pores and complexity of pore structures decreased as the original pore flow channels became filled.Water absorption curves did not change.Surface porosity and the pore fractal dimensions of rocks have good linear relationships before and after water absorption.展开更多
Rock pore structure is one of the important parameters in controlling both seismic wave velocity and permeability in sandstones and carbonate rocks. For a given porosity of two similar rocks with different pore struct...Rock pore structure is one of the important parameters in controlling both seismic wave velocity and permeability in sandstones and carbonate rocks. For a given porosity of two similar rocks with different pore structures, their acoustic wave speeds can differ 2 km/s, and permeability can span nearly six orders of magnitude from 0.01 mD to 20 D in both sandstone and limestone. In this paper, we summarize a two-parameter elastic velocity model reduced from a general poroelastic theory, to characterize the effect of pore structures on seismic wave propagation. For a given mineralogy and fluid type of a reservoir, this velocity model is defined by porosity and a frame flexibility factor, which can be used in seismic inversion and reservoir characterization to improve estimation of porosity and reserves. The frame flexibility factor can be used for quantitative classification of rock pore structure types (PST) and may be related to pore connectivity and permeability, using both poststack and prestack seismic data. This study also helps explain why amplitude versus offset analysis (AVO) in some cases fails for the purpose of fluid detection: pore structure effect on seismic waves can mask all the fluid effects, especially in carbonate rocks.展开更多
基金supported by the National Natural Science Foundation of China(No.41274136)
文摘We developed an anisotropic effective theoretical model for modeling the elastic behavior of anisotropic carbonate reservoirs by combining the anisotropic self-consistent approximation and differential effective medium models.By analyzing the measured data from carbonate samples in the TL area,a carbonate pore-structure model for estimating the elastic parameters of carbonate rocks is proposed,which is a prerequisite in the analysis of carbonate reservoirs.A workflow for determining elastic properties of carbonate reservoirs is established in terms of the anisotropic effective theoretical model and the pore-structure model.We performed numerical experiments and compared the theoretical prediction and measured data.The result of the comparison suggests that the proposed anisotropic effective theoretical model can account for the relation between velocity and porosity in carbonate reservoirs.The model forms the basis for developing new tools for predicting and evaluating the properties of carbonate reservoirs.
基金supported by Major National Oil & Gas Specific Project(Grant No.2008ZX05020-001)
文摘Pore-structure poses great influence on the permeability and electrical property of tight sand reservoirs and is critical to the petrophysical research of such reservoirs.The uncertainty of permeability for tight sands is very common and the relationship between pore- structure and electrical property is often unclear.We propose a new parameterδ,integrating porosity,maximum radius of connected pore-throats,and sorting degree,for investigating the permeability and electrical properties of tight sands.Core data and wireline log analyses show that this newδcan be used to accurately predict the tight sands permeability and has a close relation with electrical parameters,allowing the estimation of formation factor F and cementation exponent m.The normalization of the resistivity difference caused by the pore- structure is used to highlight the influence of fluid type on Rt,enhancing the coincidence rate in the Pickett crossplot significantly.
基金Project(2013YQ17046310)supported by the National Key Scientific Instrument and Equipment Development Project of ChinaProject(2013M542138)supported by China Postdoctoral Science FoundationProjects(20130162110010,20130162120012)supported by Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity.
基金sponsored by the National Nature Science Foundation of China (Grant No.40904034 and 40839905)
文摘With a more complex pore structure system compared with clastic rocks, carbonate rocks have not yet been well described by existing conventional rock physical models concerning the pore structure vagary as well as the influence on elastic rock properties. We start with a discussion and an analysis about carbonate rock pore structure utilizing rock slices. Then, given appropriate assumptions, we introduce a new approach to modeling carbonate rocks and construct a pore structure algorithm to identify pore structure mutation with a basis on the Gassmann equation and the Eshelby-Walsh ellipsoid inclusion crack theory. Finally, we compute a single well's porosity using this new approach with full wave log data and make a comparison with the predicted result of traditional method and simultaneously invert for reservoir parameters. The study results reveal that the rock pore structure can significantly influence the rocks' elastic properties and the predicted porosity error of the new modeling approach is merely 0.74%. Therefore, the approach we introduce can effectively decrease the predicted error of reservoir parameters.
基金Financial support for this work,provided by the Key Basic Research Program of China(Nos.2010CB226800 and 2007CB202200)National Natural Science Foundation of China(No. 50490270)the Innovation Team Development Program of the Ministry of Education of China(No.IRT0656)
文摘Hydrophilic characteristics of rocks are affected by their microscopic pore structures,which clearly change after water absorption.Water absorption tests and scanning electron microscopic(SEM) experiments on rock samples,located at a site in Tibet,China,were carried out Changes of rock pore structures before and after water absorption were studied with the distribution of pore sizes and fractal characteristics of pores.The results show that surface porosities,fractal dimensions of pores and the complexity of pore structures increased because the number of new small pores produced increased or the original macropore flow channels were expanded after rocks absorbed water.There were points of inflection on their water absorption curves.After water absorption of other rocks,surface porosities and fractal dimensions of pores and complexity of pore structures decreased as the original pore flow channels became filled.Water absorption curves did not change.Surface porosity and the pore fractal dimensions of rocks have good linear relationships before and after water absorption.
文摘Rock pore structure is one of the important parameters in controlling both seismic wave velocity and permeability in sandstones and carbonate rocks. For a given porosity of two similar rocks with different pore structures, their acoustic wave speeds can differ 2 km/s, and permeability can span nearly six orders of magnitude from 0.01 mD to 20 D in both sandstone and limestone. In this paper, we summarize a two-parameter elastic velocity model reduced from a general poroelastic theory, to characterize the effect of pore structures on seismic wave propagation. For a given mineralogy and fluid type of a reservoir, this velocity model is defined by porosity and a frame flexibility factor, which can be used in seismic inversion and reservoir characterization to improve estimation of porosity and reserves. The frame flexibility factor can be used for quantitative classification of rock pore structure types (PST) and may be related to pore connectivity and permeability, using both poststack and prestack seismic data. This study also helps explain why amplitude versus offset analysis (AVO) in some cases fails for the purpose of fluid detection: pore structure effect on seismic waves can mask all the fluid effects, especially in carbonate rocks.