Scale effect is one of the important aspects in the macro mechanical parame- ters’ research of rock mass, from a new point of view, by means of lab and field rock me- chanics test, establishment of E^Vp relation, cla...Scale effect is one of the important aspects in the macro mechanical parame- ters’ research of rock mass, from a new point of view, by means of lab and field rock me- chanics test, establishment of E^Vp relation, classification of engineering rock mass, nu- merical simulation test and back analysis based on surrounding rock’s displacement monitoring results of Shuibuya Project’s underground power station, rock mass deforma- tion module’s size effect of surrounding rock of Shuibuya Project’s undegroud power sta- tion was studied. It’s shown that rock mass deformation module’s scale effect of sur- rounding rock of Shuibuya Project’s undeground power station is obvious, the rock mass deformation module to tranquilization is 20% of intact rock’s. Finally the relation between rock mass deformation modules and the scale of research was established.展开更多
The structure of global lithosphere is very important to the scientific researches of tectonic movement, geodynamic process, mantle convection, resource exploration, and disaster prevention and reduction. Three-dimens...The structure of global lithosphere is very important to the scientific researches of tectonic movement, geodynamic process, mantle convection, resource exploration, and disaster prevention and reduction. Three-dimensional (3D) spatial modelling and visualization is an effective tool for lithosphere researches. However, both the isoline/profile methods and the Euclidean-based 3D modelling methods cannot meet the requirement of real 3D modeling of global lithosphere, whereas the recently developed global 3D grid methods have some defects on grid design, such as grid shrinkage, overlapping, non-orthogonality, and nonlatitude-longitude consistency. In this paper, Spheroid Degenerated-Octree Grid (SDOG), a non-overlapping, non-shrinking, orthogonal, latitude-longitude consistent grid in the spheroidal manifold space, was chosen as the basic grid for global lithosphere 3D modeling and visualization. The SDOG-based methods of spatial representation and modelling of lithosphere were proposed. A multi-scale model of lithosphere was designed, and the multi-scale modeling and multi-mode visualization were realized at the full advantages of SDOG in multi-hierarchical and multi-resolution and the properties of lithosphere in multi-semantic. It shows that (1) the SDOG-based method has not only overcome the defects of the current global 3D grid, but also reflected the spherical features of lithosphere more realistically and naturally than the traditional methods, providing a novel solution for global modeling, numeric simulating, and data sharing of lithosphere; and (2) more detailed plates division, more precise geo-layer structure, plates boarder and surface concave-convex, and more rich lithosphere properties are revealed as the scale-model moves on.展开更多
文摘Scale effect is one of the important aspects in the macro mechanical parame- ters’ research of rock mass, from a new point of view, by means of lab and field rock me- chanics test, establishment of E^Vp relation, classification of engineering rock mass, nu- merical simulation test and back analysis based on surrounding rock’s displacement monitoring results of Shuibuya Project’s underground power station, rock mass deforma- tion module’s size effect of surrounding rock of Shuibuya Project’s undegroud power sta- tion was studied. It’s shown that rock mass deformation module’s scale effect of sur- rounding rock of Shuibuya Project’s undeground power station is obvious, the rock mass deformation module to tranquilization is 20% of intact rock’s. Finally the relation between rock mass deformation modules and the scale of research was established.
基金supported by National Basic Research Progam of China(Grant No. 2011CB707102)National Natural Science Foundation of China (Grant No. 40930104)
文摘The structure of global lithosphere is very important to the scientific researches of tectonic movement, geodynamic process, mantle convection, resource exploration, and disaster prevention and reduction. Three-dimensional (3D) spatial modelling and visualization is an effective tool for lithosphere researches. However, both the isoline/profile methods and the Euclidean-based 3D modelling methods cannot meet the requirement of real 3D modeling of global lithosphere, whereas the recently developed global 3D grid methods have some defects on grid design, such as grid shrinkage, overlapping, non-orthogonality, and nonlatitude-longitude consistency. In this paper, Spheroid Degenerated-Octree Grid (SDOG), a non-overlapping, non-shrinking, orthogonal, latitude-longitude consistent grid in the spheroidal manifold space, was chosen as the basic grid for global lithosphere 3D modeling and visualization. The SDOG-based methods of spatial representation and modelling of lithosphere were proposed. A multi-scale model of lithosphere was designed, and the multi-scale modeling and multi-mode visualization were realized at the full advantages of SDOG in multi-hierarchical and multi-resolution and the properties of lithosphere in multi-semantic. It shows that (1) the SDOG-based method has not only overcome the defects of the current global 3D grid, but also reflected the spherical features of lithosphere more realistically and naturally than the traditional methods, providing a novel solution for global modeling, numeric simulating, and data sharing of lithosphere; and (2) more detailed plates division, more precise geo-layer structure, plates boarder and surface concave-convex, and more rich lithosphere properties are revealed as the scale-model moves on.