Proper analysis of petrophysical parameter sensitivity from well log data can greatly improve the ability to discriminate hydrocarbon-bearing rocks. In this paper we discuss a petrophysical analysis method for the sel...Proper analysis of petrophysical parameter sensitivity from well log data can greatly improve the ability to discriminate hydrocarbon-bearing rocks. In this paper we discuss a petrophysical analysis method for the selection and application of higher sensitivity seismic attribute parameters to improve the ability to discriminate fluid and lithology. To better integrate with seismic interpretation, we construct a template to highlight rock physics parameters in sensitivity space, providing guidance for the quantitative seismic interpretation of hydrocarbon-bearing reservoirs.展开更多
There are ambiguities and uncertainties in the recognition of gas hydrate seismic reflections and in quantitative predictions of physical information of natural gas hydrate reservoirs from seismic data. Rock physical ...There are ambiguities and uncertainties in the recognition of gas hydrate seismic reflections and in quantitative predictions of physical information of natural gas hydrate reservoirs from seismic data. Rock physical modelling is a bridge that transforms the seismic information of geophysical observations into physical information, but traditional rock physics models lack descriptions of reservoir micro-structures and pore-filling materials. Considering the mineral compositions and pore microstructures of gas hydrates, we built rock physical models for load-bearing and pore-filling gas hydrate-bearing sediments,describe the mineral compositions, pore connectivity and pore shape using effective media theory, calculated the shear properties of pore-filling gas hydrates using Patchy saturation theory and Generalized Gassmann theory, and then revealed the quantitative relation between the elastic parameters and physical parameters for gas hydrate-bearing sediments. The numerical modelling results have shown that the ratios of P-wave and S-wave velocities decrease with hydrate saturation, the P-wave and S-wave velocities of load-bearing gas hydrate-bearing sediments are more sensitive to hydrate saturation, sensitivity is higher with narrower pores, and the ratios of the P-wave and S-wave velocities of pore-filling gas hydrate-bearing sediments are more sensitive to shear properties of hydrates at higher hydrate saturations. Theoretical analysis and practical application results showed that the rock physical models in this paper can be used to calculate the quantitative relation between macro elastic properties and micro physical properties of gas hydrate-bearing sediments, offer shear velocity information lacking in well logging, determine elastic parameters that have more effective indicating abilities, obtain physical parameters such as hydrate saturation and pore aspect ratios, and provide a theoretical basis and practical guidance for gas hydrate quantitative predictions.展开更多
Underground fractures play an important role in the storage and movement of hydrocarbon fluid. Fracture rock physics has been the useful bridge between fracture parameters and seismic response. In this paper, we aim t...Underground fractures play an important role in the storage and movement of hydrocarbon fluid. Fracture rock physics has been the useful bridge between fracture parameters and seismic response. In this paper, we aim to use seismic data to predict subsurface fractures based on rock physics. We begin with the construction of fracture rock physics model. Using the model, we may estimate P-wave velocity, S-wave velocity and fracture rock physics parameters. Then we derive a new approximate formula for the analysis of the relationship between fracture rock physics parameters and seismic response, and we also propose the method which uses seismic data to invert the elastic and rock physics parameters of fractured rock. We end with the method verification, which includes using well-logging data to confirm the reliability of fracture rock physics effective model and utilizing real seismic data to validate the applicability of the inversion method. Tests show that the fracture rock physics effective model may be used to estimate velocities and fracture rock physics parameters reliably, and the inversion method is resultful even when the seismic data is added with random noise. Real data test also indicates the inversion method can be applied into the estimation of the elastic and fracture weaknesses parameters in the target area.展开更多
Seismic fluid identification works as an effective approach to characterize the fluid feature and distribution of the reservoir underground with seismic data. Rock physics which builds bridge between the elastic param...Seismic fluid identification works as an effective approach to characterize the fluid feature and distribution of the reservoir underground with seismic data. Rock physics which builds bridge between the elastic parameters and reservoir parameters sets the foundation of seismic fluid identification, which is also a hot topic on the study of quantitative characterization of oil/gas reservoirs. Study on seismic fluid identification driven by rock physics has proved to be rewarding in recognizing the fluid feature and distributed regularity of the oil/gas reservoirs. This paper summarizes the key scientific problems immersed in seismic fluid identification, and emphatically reviews the main progress of seismic fluid identification driven by rock physics domestic and overseas, as well as discusses the opportunities, challenges and future research direction related to seismic fluid identification. Theoretical study and practical application indicate that we should incorporate rock physics, numerical simulation, seismic data processing and seismic inversion together to enhance the precision of seismic fluid identification.展开更多
文摘Proper analysis of petrophysical parameter sensitivity from well log data can greatly improve the ability to discriminate hydrocarbon-bearing rocks. In this paper we discuss a petrophysical analysis method for the selection and application of higher sensitivity seismic attribute parameters to improve the ability to discriminate fluid and lithology. To better integrate with seismic interpretation, we construct a template to highlight rock physics parameters in sensitivity space, providing guidance for the quantitative seismic interpretation of hydrocarbon-bearing reservoirs.
基金supported by the National Natural Science Foundation of China (Grant No. 41706042)the China Postdoctoral Science Foundation (Grant No. 2015M582060)+2 种基金the Special Fund for Land & Resources Scientific Research in the Public Interest (Grant No. 201511037)the National Key Research and Development Program (Grant No. 2017YFC0307400)the Foundation of Key Laboratory of Submarine Geosciences (Grant No. KLSG1603)
文摘There are ambiguities and uncertainties in the recognition of gas hydrate seismic reflections and in quantitative predictions of physical information of natural gas hydrate reservoirs from seismic data. Rock physical modelling is a bridge that transforms the seismic information of geophysical observations into physical information, but traditional rock physics models lack descriptions of reservoir micro-structures and pore-filling materials. Considering the mineral compositions and pore microstructures of gas hydrates, we built rock physical models for load-bearing and pore-filling gas hydrate-bearing sediments,describe the mineral compositions, pore connectivity and pore shape using effective media theory, calculated the shear properties of pore-filling gas hydrates using Patchy saturation theory and Generalized Gassmann theory, and then revealed the quantitative relation between the elastic parameters and physical parameters for gas hydrate-bearing sediments. The numerical modelling results have shown that the ratios of P-wave and S-wave velocities decrease with hydrate saturation, the P-wave and S-wave velocities of load-bearing gas hydrate-bearing sediments are more sensitive to hydrate saturation, sensitivity is higher with narrower pores, and the ratios of the P-wave and S-wave velocities of pore-filling gas hydrate-bearing sediments are more sensitive to shear properties of hydrates at higher hydrate saturations. Theoretical analysis and practical application results showed that the rock physical models in this paper can be used to calculate the quantitative relation between macro elastic properties and micro physical properties of gas hydrate-bearing sediments, offer shear velocity information lacking in well logging, determine elastic parameters that have more effective indicating abilities, obtain physical parameters such as hydrate saturation and pore aspect ratios, and provide a theoretical basis and practical guidance for gas hydrate quantitative predictions.
基金supported by the National Basic Research Program of China(Grant Nos.2013CB228604,2014CB239201)the National Oil and Gas Major Projects of China(Grant No.2011ZX05014-001-010HZ)+2 种基金CNPC Innovation Foundation(Grant No.2011D-5006-0301)the Fundamental Research Funds for the Central Universities in China(Grant No.14CX06015A)SINOPEC Key Laboratory of Geophysics
文摘Underground fractures play an important role in the storage and movement of hydrocarbon fluid. Fracture rock physics has been the useful bridge between fracture parameters and seismic response. In this paper, we aim to use seismic data to predict subsurface fractures based on rock physics. We begin with the construction of fracture rock physics model. Using the model, we may estimate P-wave velocity, S-wave velocity and fracture rock physics parameters. Then we derive a new approximate formula for the analysis of the relationship between fracture rock physics parameters and seismic response, and we also propose the method which uses seismic data to invert the elastic and rock physics parameters of fractured rock. We end with the method verification, which includes using well-logging data to confirm the reliability of fracture rock physics effective model and utilizing real seismic data to validate the applicability of the inversion method. Tests show that the fracture rock physics effective model may be used to estimate velocities and fracture rock physics parameters reliably, and the inversion method is resultful even when the seismic data is added with random noise. Real data test also indicates the inversion method can be applied into the estimation of the elastic and fracture weaknesses parameters in the target area.
基金supported by the National Basic Research Program of China(Grant No.2013CB228604)the National Grand Project for Science and Technology(Grant Nos.2011ZX05030-004-002,2011ZX05019-003,2011ZX05006-002)SINOPEC Key Laboratory of Geophysics+2 种基金Science Foundation for Post-doctoral Scientists of ChinaScience Foundation for Post-doctoral Scientists of Shandongthe Western Australian Energy Research Alliance(WA:ERA)
文摘Seismic fluid identification works as an effective approach to characterize the fluid feature and distribution of the reservoir underground with seismic data. Rock physics which builds bridge between the elastic parameters and reservoir parameters sets the foundation of seismic fluid identification, which is also a hot topic on the study of quantitative characterization of oil/gas reservoirs. Study on seismic fluid identification driven by rock physics has proved to be rewarding in recognizing the fluid feature and distributed regularity of the oil/gas reservoirs. This paper summarizes the key scientific problems immersed in seismic fluid identification, and emphatically reviews the main progress of seismic fluid identification driven by rock physics domestic and overseas, as well as discusses the opportunities, challenges and future research direction related to seismic fluid identification. Theoretical study and practical application indicate that we should incorporate rock physics, numerical simulation, seismic data processing and seismic inversion together to enhance the precision of seismic fluid identification.