The seismic computed tomography (CT) method is derived from the basic principles of X-ray section scanning first applied in medical science. The method records P-wave arrivals between shots and receivers in separate...The seismic computed tomography (CT) method is derived from the basic principles of X-ray section scanning first applied in medical science. The method records P-wave arrivals between shots and receivers in separate boreholes. Using the velocity information from 2D seismic P-wave arrival inversion, we can determine the distribution of velocity in rock and soil bodies. This paper introduces a practical case of using the seismic CT method for detecting the structure of the rocks for tunnel engineering and to utilize SIRT algorithms for doing first arrival time iterative inversion. Compared with other exploration methods, it is more efficient and accurate.展开更多
In order to investigate the failure mechanism of rock joint,a series of laboratory tests including cyclic direct shear tests under constant normal load(CNL)conditions were conducted.Morphology parameters of the rock j...In order to investigate the failure mechanism of rock joint,a series of laboratory tests including cyclic direct shear tests under constant normal load(CNL)conditions were conducted.Morphology parameters of the rock joint surface were precisely calculated by means of a three-dimensional laser scanning machine.All test results were analyzed to investigate the shear behavior and normal displacement behavior of rock joints under CNL conditions.Degradation of rock joint surface during cyclic shear tests was also analyzed.The comparison results of the height parameters and the hybrid parameters of the joint surface during cyclic tests show that the degradation of the surface mostly happens in the first shear and the constant normal loads imposed on the joints have significant promotion effects on the morphology degradation.During cyclic shear tests,joints surfaces evolve from rough state to smooth state but keep an overall undulation.Dilatancy of rock joints degrades with the degradation of joint surface and the increase of normal loads.The closure deformation of joint is larger than that of the intact rock,and the normal stiffness increases with the increase of shearing times.展开更多
Large-scale physical model test of 30°inclined strata was conducted to investigate the damage mechanisms during the excavation and overloading using infrared detection.The experiment results were presented with t...Large-scale physical model test of 30°inclined strata was conducted to investigate the damage mechanisms during the excavation and overloading using infrared detection.The experiment results were presented with thermal images which were divided into three stages including a full face excavation stage,a staged excavation stage,and an overloading stage.The obtained results were compared with the previously reported results from horizontal,45?,60?,and vertical strata models.Infrared temperature(IRT)for 30°inclined strata model descended with multiple fluctuations during the full-face excavation.For the staged excavation,the excavation damage zone(EDZ)showed enhanced faulting-like strips as compared in the 45?,60?,and vertical models,indicating the intensified stress redistribution occurred in the adjacent rock mass.In contrast,EDZ for the horizontal strata existed in a plastic-formed manner.During the overloading,abnormal features in the thermal images were observed preceding the coalescence of the propagating cracks.The ultimate failure of the model was due primarily to the floor heave and the roof fall.展开更多
文摘The seismic computed tomography (CT) method is derived from the basic principles of X-ray section scanning first applied in medical science. The method records P-wave arrivals between shots and receivers in separate boreholes. Using the velocity information from 2D seismic P-wave arrival inversion, we can determine the distribution of velocity in rock and soil bodies. This paper introduces a practical case of using the seismic CT method for detecting the structure of the rocks for tunnel engineering and to utilize SIRT algorithms for doing first arrival time iterative inversion. Compared with other exploration methods, it is more efficient and accurate.
基金Project(51274249)supported by the National Natural Science Foundation of ChinaProject(2015zzts076)supported by the Explore Research Fund for Graduate Students of ChinaProject(201406)supported by the Hunan Key Laboratory of Coal Resources and Safe Mining Open-end Funds,China
文摘In order to investigate the failure mechanism of rock joint,a series of laboratory tests including cyclic direct shear tests under constant normal load(CNL)conditions were conducted.Morphology parameters of the rock joint surface were precisely calculated by means of a three-dimensional laser scanning machine.All test results were analyzed to investigate the shear behavior and normal displacement behavior of rock joints under CNL conditions.Degradation of rock joint surface during cyclic shear tests was also analyzed.The comparison results of the height parameters and the hybrid parameters of the joint surface during cyclic tests show that the degradation of the surface mostly happens in the first shear and the constant normal loads imposed on the joints have significant promotion effects on the morphology degradation.During cyclic shear tests,joints surfaces evolve from rough state to smooth state but keep an overall undulation.Dilatancy of rock joints degrades with the degradation of joint surface and the increase of normal loads.The closure deformation of joint is larger than that of the intact rock,and the normal stiffness increases with the increase of shearing times.
基金supported by the National Key Research and Development Plan of China (Grant No. 2016YFC0600901)the National Natural Science Foundation of China (Grant Nos. 51374214, 51134005 & 51574248)+1 种基金the Special Fund of Basic Research and Operating of China University of Mining & Technology, Beijing (Grant No. 2009QL03)the State Scholarship Fund of China
文摘Large-scale physical model test of 30°inclined strata was conducted to investigate the damage mechanisms during the excavation and overloading using infrared detection.The experiment results were presented with thermal images which were divided into three stages including a full face excavation stage,a staged excavation stage,and an overloading stage.The obtained results were compared with the previously reported results from horizontal,45?,60?,and vertical strata models.Infrared temperature(IRT)for 30°inclined strata model descended with multiple fluctuations during the full-face excavation.For the staged excavation,the excavation damage zone(EDZ)showed enhanced faulting-like strips as compared in the 45?,60?,and vertical models,indicating the intensified stress redistribution occurred in the adjacent rock mass.In contrast,EDZ for the horizontal strata existed in a plastic-formed manner.During the overloading,abnormal features in the thermal images were observed preceding the coalescence of the propagating cracks.The ultimate failure of the model was due primarily to the floor heave and the roof fall.