A 3-D digital core describes the pore space microstructure of rocks. An X-ray micro CT scan is the most accurate and direct but costly method to obtain a 3-D digital core. In this study, we propose a hybrid method whi...A 3-D digital core describes the pore space microstructure of rocks. An X-ray micro CT scan is the most accurate and direct but costly method to obtain a 3-D digital core. In this study, we propose a hybrid method which combines sedimentation simulation and simulated annealing (SA) method to generate 3-D digital cores based on 2-D images of rocks. The method starts with the sedimentation simulation to build a 3-D digital core, which is the initial configuration for the SA method. We update the initial digital core using the SA method to match the auto-correlation function of the 2-D rock image and eventually build the final 3-D digital core. Compared with the typical SA method, the hybrid method has significantly reduced the computation time. Local porosity theory is applied to quantitatively compare the reconstructed 3-D digital cores with the X-ray micro CT 3-D images. The results indicate that the 3-D digital cores reconstructed by the hybrid method have homogeneity and geometric connectivity similar to those of the X-ray micro CT image. The formation factors and permeabilities of the reconstructed 3-D digital cores are estimated using the finite element method (FEM) and lattice Boltzmann method (LBM), respectively. The simulated results are in good agreement with the experimental measurements. Comparison of the simulation results suggests that the digital cores reconstructed by the hybrid method more closely reflect the true transport properties than the typical SA method alone.展开更多
The computerized tomography technique is applied to study the damage propagation of rock for the first time in this paper. CT values and their distribution regularity of damage propaga-tion of rock are analyzed in det...The computerized tomography technique is applied to study the damage propagation of rock for the first time in this paper. CT values and their distribution regularity of damage propaga-tion of rock are analyzed in detail. The relation between CT values and stresses (strains) of the damage propagation of rock is then discussed. This provides the foundation for establishing the constitutive relation of damage propagation of rock.展开更多
The advanced computerized tomography is applied to study the damage propagation of rock. The real time CT scanning is carried out to the damage propagation of rock under triaxial stress condition. The damage propagati...The advanced computerized tomography is applied to study the damage propagation of rock. The real time CT scanning is carried out to the damage propagation of rock under triaxial stress condition. The damage propagation constitutive relation of rock under triaxial stress condition is analyzed at last.展开更多
The damage propagation constitutive relation of rock under uniaxial stress condition is studied by CT scanning in this paper. Damage variables of rock are calculated using CT scanning method and Lemaitre’s equivalent...The damage propagation constitutive relation of rock under uniaxial stress condition is studied by CT scanning in this paper. Damage variables of rock are calculated using CT scanning method and Lemaitre’s equivalent strain hypothesis respecively, the damage propagation constitutive relation of rock is discussed.展开更多
The aim of this paper is to investigate the damage cracking characteristics of rock and soil aggregate(RSA)by X-ray computed tomography(CT)under uniaxial compressive loading.The mean CT value for the region of interes...The aim of this paper is to investigate the damage cracking characteristics of rock and soil aggregate(RSA)by X-ray computed tomography(CT)under uniaxial compressive loading.The mean CT value for the region of interest(ROI)is used to analyze the cracking characteristics.Also,the mathematical morphology method based on the image threshold segmentation is used to obtain characteristic parameters of cracks to describe the cracking evolution of RSA.Results show that the elastic mismatch between rock blocks and soil matrix is the primary reason for RSA cracking.The mean CT value for the RSA specimen,rock block inclusions,and their adjacent soil regions decreases with the increasing stress level.However,it is more sensitive for block inclusions than soil regions.Using the image segmentation method,length,area and mean width of cracks obey to power function distribution.Crack statistical characteristics are closely related to the rock block’s distribution and morphology.These results may be useful to reveal the mesoscopic cracking mechanism,establish meso-damage evolution equation,and constitutive relation for RSA.展开更多
文摘岩石电子计算机断层扫描(Computed Tomography,CT)图像可使岩石内部结构可视化,故可以作为评估油气储藏量的依据。但是,受采集条件的约束,岩石CT图像往往分辨率低、细节较模糊。因此,本文基于生成对抗网络(Generative Adversarial Network,GAN)方法引入岩石孔隙度损失,在原有损失函数约束的基础上增加新的约束项,并进行4倍超分辨重构实验,通过峰值信噪比(Peak Signal to Noise Ratio,PSNR)和结构相似性(Structural Similarity Index,SSIM)的指标比较重建结果。结果表明,本文方法在指标和视觉上均取得了良好效果。
基金sponsored by NSFC(Grant No.40574030)CNPC Research Project(Grant No.06A30102)
文摘A 3-D digital core describes the pore space microstructure of rocks. An X-ray micro CT scan is the most accurate and direct but costly method to obtain a 3-D digital core. In this study, we propose a hybrid method which combines sedimentation simulation and simulated annealing (SA) method to generate 3-D digital cores based on 2-D images of rocks. The method starts with the sedimentation simulation to build a 3-D digital core, which is the initial configuration for the SA method. We update the initial digital core using the SA method to match the auto-correlation function of the 2-D rock image and eventually build the final 3-D digital core. Compared with the typical SA method, the hybrid method has significantly reduced the computation time. Local porosity theory is applied to quantitatively compare the reconstructed 3-D digital cores with the X-ray micro CT 3-D images. The results indicate that the 3-D digital cores reconstructed by the hybrid method have homogeneity and geometric connectivity similar to those of the X-ray micro CT image. The formation factors and permeabilities of the reconstructed 3-D digital cores are estimated using the finite element method (FEM) and lattice Boltzmann method (LBM), respectively. The simulated results are in good agreement with the experimental measurements. Comparison of the simulation results suggests that the digital cores reconstructed by the hybrid method more closely reflect the true transport properties than the typical SA method alone.
文摘The computerized tomography technique is applied to study the damage propagation of rock for the first time in this paper. CT values and their distribution regularity of damage propaga-tion of rock are analyzed in detail. The relation between CT values and stresses (strains) of the damage propagation of rock is then discussed. This provides the foundation for establishing the constitutive relation of damage propagation of rock.
文摘The advanced computerized tomography is applied to study the damage propagation of rock. The real time CT scanning is carried out to the damage propagation of rock under triaxial stress condition. The damage propagation constitutive relation of rock under triaxial stress condition is analyzed at last.
文摘The damage propagation constitutive relation of rock under uniaxial stress condition is studied by CT scanning in this paper. Damage variables of rock are calculated using CT scanning method and Lemaitre’s equivalent strain hypothesis respecively, the damage propagation constitutive relation of rock is discussed.
基金supported by the National Natural Science Foundation of China(Grants Nos.41227901,41027001,and 41027001)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grants Nos.XDB10030000,XDB10030300 and XDB10050400)
文摘The aim of this paper is to investigate the damage cracking characteristics of rock and soil aggregate(RSA)by X-ray computed tomography(CT)under uniaxial compressive loading.The mean CT value for the region of interest(ROI)is used to analyze the cracking characteristics.Also,the mathematical morphology method based on the image threshold segmentation is used to obtain characteristic parameters of cracks to describe the cracking evolution of RSA.Results show that the elastic mismatch between rock blocks and soil matrix is the primary reason for RSA cracking.The mean CT value for the RSA specimen,rock block inclusions,and their adjacent soil regions decreases with the increasing stress level.However,it is more sensitive for block inclusions than soil regions.Using the image segmentation method,length,area and mean width of cracks obey to power function distribution.Crack statistical characteristics are closely related to the rock block’s distribution and morphology.These results may be useful to reveal the mesoscopic cracking mechanism,establish meso-damage evolution equation,and constitutive relation for RSA.