期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
综合岭回归和SARIMA方法在桥梁健康监测数据分析中的应用 被引量:3
1
作者 谌桢文 常军 《科学技术与工程》 北大核心 2023年第20期8846-8853,共8页
桥梁健康监测系统的实测数据普遍存在缺失问题,为了保证桥梁监测数据的完整性,更好地预测桥梁未来的健康状况,提出了一种具有样本内和样本外预测能力的组合模型。样本外预测可以基于现在数据预测未来的桥梁健康状态,样本内回归用于填补... 桥梁健康监测系统的实测数据普遍存在缺失问题,为了保证桥梁监测数据的完整性,更好地预测桥梁未来的健康状况,提出了一种具有样本内和样本外预测能力的组合模型。样本外预测可以基于现在数据预测未来的桥梁健康状态,样本内回归用于填补传感器数据中的缺失值,确保桥梁监测数据的完整性。由于不同位置处相同类型传感器的相关性较强,首先利用岭回归(ridge regression,RR)解决共线性问题,建立各传感器数据之间的关联,并预测缺失数据。接着引入季节性差分自回归滑动平均(seasonal autoregressive integrated moving average,SARIMA)方法,利用其样本外预测能力并结合岭回归方法预测桥梁未来运行数据。最后,将该方法应用于实桥中,验证了其有效性,为传感器数据填补以及预测桥梁未来状态提供了有效的预测模型。 展开更多
关键词 大数据 缺失数据填补 数据预测 回归(rr) 季节性差分自回归滑动平均(SARIMA)
下载PDF
基于CSP和RR的多类运动想象脑电信号的识别分类研究 被引量:4
2
作者 曹胜海 伏云发 +2 位作者 彭尧 张建平 冷传涛 《软件》 2017年第12期223-228,共6页
脑-机接口通过大脑皮层的EEG活动或者大脑里单个神经元活动使得用户可以来控制设备。这方面最具挑战性的问题之一就是如何提高脑电信号的识别精度。本文采用少通道以及共同空间模式-岭回归分析的模式识别方法,并将其应用到四种运动想象... 脑-机接口通过大脑皮层的EEG活动或者大脑里单个神经元活动使得用户可以来控制设备。这方面最具挑战性的问题之一就是如何提高脑电信号的识别精度。本文采用少通道以及共同空间模式-岭回归分析的模式识别方法,并将其应用到四种运动想象脑电的识别分类。首先对原始数据进行有效的预处理,有漂移矫正,滤波,改进的ICA(Independent Component Analysis)去除伪迹;再利用CSP(Common Space Pattern)和HHT(Hibert-Huang Transform)分别对预处理好的数据进行特征提取;最后再将两种算法提取的特征分别进行SVM(Support vector machine),LDA(Linear Discriminant Analysis)和RR(Ridge Regression)进行分类。实验结果证明,共同空间模式-岭回归分析最后的分类效果是最好的,平均分类识别率约为82.93%,数据中9名被试的最高和最低的分类识别率之间的标准差为1.37%。 展开更多
关键词 脑-机接口 预处理 回归分析(rr) 特征提取
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部