The beach studied in this paper spans a length of 51 km and is one of several long sandy beaches in the southern Bohai Strait. Due to the obstruction of islands in the northeast and the influence of the underwater top...The beach studied in this paper spans a length of 51 km and is one of several long sandy beaches in the southern Bohai Strait. Due to the obstruction of islands in the northeast and the influence of the underwater topography, the wave environment in the offshore area is complex; beach types and sediment transport characteristics vary along different coasts. The coastlines extracted from six aerial photographs in different years were compared to demonstrate the evolving features. Seven typical beach profiles were selected to study the lateral beach variation characteristics. Continuous wind and wave observation data from Beihuangcheng ocean station during 2009 were employed for the hindcast of the local wave environment using a regional spectral wave model. Then the results of the wave hindcast were incorporated into the LITDRIFT model to compute the sediment transport rates and directions along the coasts and analyze the longshore sand movement. The results show that the coastline evolution of sand beaches in the southern Bohai Strait has spatial and temporal variations and the coast can be divided into four typical regions. Region (1), the north coast of Qimudao, is a slightly eroded and dissipative beach with a large sediment transport rate; Region (II), the southwest coast of Gangluan Port, is a slightly deposited and dissipative beach with moderate sediment transport rate; Region (III), in the central area, is a beach that is gradually transformed from a slightly eroded dissipative beach to a moderately or slightly strong eroded bar-trough beach from west to east with a relatively moderate sediment transport rate. Region (IV), on the east coast, is a strongly eroded and reflective beach with a weak sediment transport rate. The wave conditions exhibit an increasing trend from west to east in the off- shore area. The distribution of the wave-induced current inside the wave breaking region and the littoral sediment transport in the nearshore region exhibit a gradual weakening tendency from west to east, which is opposite to the trend of the wave conditions out- side the breaking region. The presence of submerged shoal (Dengzhou Shoal), deep trough (Dengzhou Channel), islands and irregu- lar topography influnces the wave climate, beach types, wave-induced current features, littoral sediment transport trends and coast- line evolution patterns in the southern Bohai Strait. Human activities, such as the sand exploitation of Dengzhou Shoal and other coastal engineering projects, also influence the beach morphology and coastline evolution.展开更多
基金supported by the National Natural Science Foundation for the Youth(No.41106039)
文摘The beach studied in this paper spans a length of 51 km and is one of several long sandy beaches in the southern Bohai Strait. Due to the obstruction of islands in the northeast and the influence of the underwater topography, the wave environment in the offshore area is complex; beach types and sediment transport characteristics vary along different coasts. The coastlines extracted from six aerial photographs in different years were compared to demonstrate the evolving features. Seven typical beach profiles were selected to study the lateral beach variation characteristics. Continuous wind and wave observation data from Beihuangcheng ocean station during 2009 were employed for the hindcast of the local wave environment using a regional spectral wave model. Then the results of the wave hindcast were incorporated into the LITDRIFT model to compute the sediment transport rates and directions along the coasts and analyze the longshore sand movement. The results show that the coastline evolution of sand beaches in the southern Bohai Strait has spatial and temporal variations and the coast can be divided into four typical regions. Region (1), the north coast of Qimudao, is a slightly eroded and dissipative beach with a large sediment transport rate; Region (II), the southwest coast of Gangluan Port, is a slightly deposited and dissipative beach with moderate sediment transport rate; Region (III), in the central area, is a beach that is gradually transformed from a slightly eroded dissipative beach to a moderately or slightly strong eroded bar-trough beach from west to east with a relatively moderate sediment transport rate. Region (IV), on the east coast, is a strongly eroded and reflective beach with a weak sediment transport rate. The wave conditions exhibit an increasing trend from west to east in the off- shore area. The distribution of the wave-induced current inside the wave breaking region and the littoral sediment transport in the nearshore region exhibit a gradual weakening tendency from west to east, which is opposite to the trend of the wave conditions out- side the breaking region. The presence of submerged shoal (Dengzhou Shoal), deep trough (Dengzhou Channel), islands and irregu- lar topography influnces the wave climate, beach types, wave-induced current features, littoral sediment transport trends and coast- line evolution patterns in the southern Bohai Strait. Human activities, such as the sand exploitation of Dengzhou Shoal and other coastal engineering projects, also influence the beach morphology and coastline evolution.