为了提升传统行人徘徊检测方法的准确性,提出了一种结合行人检测与峰值密度聚类的行人多次徘徊检测算法(Multiple Wander Detection Combining Pedestrian Detection and Peak Density ClusteringMWD_PD_DPC)。首先,在行人检测算法的特...为了提升传统行人徘徊检测方法的准确性,提出了一种结合行人检测与峰值密度聚类的行人多次徘徊检测算法(Multiple Wander Detection Combining Pedestrian Detection and Peak Density ClusteringMWD_PD_DPC)。首先,在行人检测算法的特征提取网络与FPN层之间加入自适应卷积注意力机制(SKNet),提升模型在多尺度场景下行人检测精度。然后,提出了柔性非极大值抑制(DIOU-Soft-NMS)来缓解行人在密集场景下错误抑制的现象,提升行人检测算法在密集场景下的检测精度。最后,使用峰值密度聚类算法(DPC)对行人的轨迹进行分析,来判断是否发生徘徊行为。并通过AdaFace人脸识别算法对徘徊的行人进行人脸匹配,来判断行人是否在不同时间段多次发生徘徊行为。实验表明,该方法单次徘徊检测的准确率到达了94.6%。行人多次徘徊检测的准确率到达了78.7%。展开更多
密度峰值聚类(clustering by fast search and find of density peaks,DPC)算法是一种基于密度的聚类算法,它可以发现任意形状和维度的类簇,是具有里程碑意义的聚类算法。然而,DPC算法的样本局部密度定义不适用于同时发现数据集的稠密...密度峰值聚类(clustering by fast search and find of density peaks,DPC)算法是一种基于密度的聚类算法,它可以发现任意形状和维度的类簇,是具有里程碑意义的聚类算法。然而,DPC算法的样本局部密度定义不适用于同时发现数据集的稠密簇和稀疏簇;此外,DPC算法的一步分配策略使得一旦有一个样本分配错误,将导致更多样本的错误分配,产生“多米诺骨牌效应”。针对这些问题,提出一种新的样本局部密度定义,采用局部标准差指数定义样本局部密度,克服DPC的密度定义缺陷;采用两步分配策略代替DPC的一步分配策略,克服DPC的“多米诺骨牌效应”,得到ESDTS-DPC算法。与DPC及其改进算法KNN-DPC、FKNN-DPC、DPC-CE和经典密度聚类算法DBSCAN的实验比较显示,提出的ESDTS-DPC算法具有更好的聚类准确性。展开更多
为提升时间序列的聚类精度,提出一种融合优化可调Q因子小波变换的改进密度峰值聚类(improved density peaks clustering based on optimal tunable Q-factor wavelet transform,OTQWT-IDPC)算法,该算法利用可调Q因子小波变换的能量优化...为提升时间序列的聚类精度,提出一种融合优化可调Q因子小波变换的改进密度峰值聚类(improved density peaks clustering based on optimal tunable Q-factor wavelet transform,OTQWT-IDPC)算法,该算法利用可调Q因子小波变换的能量优化选择策略及改进粒子群优化算法确定的最佳Q因子分解时序信号,通过最优特征子带的能量、均值、标准差和模糊熵构建特征子空间,并采用主成分分析降低特征维度,以减少特征冗余。同时,考虑到距离较远而周围密集程度较大的K近邻样本对局部密度的贡献率,引入权重系数及K近邻重新定义DPC的局部密度,并利用共享最近邻描述样本间的相似性。在BONN癫痫脑电信号和CWRU滚动轴承数据集上进行对比实验,结果表明,该算法的聚类精度分别为95%、94%,且Jacarrd、FMI和F_(1)值指标均优于其他对比算法,证明了OTQWT-IDPC算法的有效性。展开更多
Tri-training利用无标签数据进行分类可有效提高分类器的泛化能力,但其易将无标签数据误标,从而形成训练噪声。提出一种基于密度峰值聚类的Tri-training(Tri-training with density peaks clustering,DPC-TT)算法。密度峰值聚类通过类...Tri-training利用无标签数据进行分类可有效提高分类器的泛化能力,但其易将无标签数据误标,从而形成训练噪声。提出一种基于密度峰值聚类的Tri-training(Tri-training with density peaks clustering,DPC-TT)算法。密度峰值聚类通过类簇中心和局部密度可选出数据空间结构表现较好的样本。DPC-TT算法采用密度峰值聚类算法获取训练数据的类簇中心和样本的局部密度,对类簇中心的截断距离范围内的样本认定为空间结构表现较好,标记为核心数据,使用核心数据更新分类器,可降低迭代过程中的训练噪声,进而提高分类器的性能。实验结果表明:相比于标准Tritraining算法及其改进算法,DPC-TT算法具有更好的分类性能。展开更多
为解决用户群体移动轨迹划分和密度峰值聚类算法自身局限性的问题,以校园轨迹为对象,考虑时间和位置语义信息层面的信息,建立网络用户间的相似性度量模型,提出一种基于共享近邻贡献度的密度峰值聚类算法(density peak clustering based ...为解决用户群体移动轨迹划分和密度峰值聚类算法自身局限性的问题,以校园轨迹为对象,考虑时间和位置语义信息层面的信息,建立网络用户间的相似性度量模型,提出一种基于共享近邻贡献度的密度峰值聚类算法(density peak clustering based on shared nearest neighbor contribution,SNNC-DPC),结合信息熵理论,通过最小化局部密度熵自适应选择截断距离;在局部密度计算上,利用共享近邻贡献度重新计算局部密度,更加全面地反映数据分布的特性;采用非线性变换方法选取决策值,解决聚类中心选取困难且方法单一的问题。在真实校园轨迹数据集上实验,验证了改进算法的有效性。展开更多
文摘为了提升传统行人徘徊检测方法的准确性,提出了一种结合行人检测与峰值密度聚类的行人多次徘徊检测算法(Multiple Wander Detection Combining Pedestrian Detection and Peak Density ClusteringMWD_PD_DPC)。首先,在行人检测算法的特征提取网络与FPN层之间加入自适应卷积注意力机制(SKNet),提升模型在多尺度场景下行人检测精度。然后,提出了柔性非极大值抑制(DIOU-Soft-NMS)来缓解行人在密集场景下错误抑制的现象,提升行人检测算法在密集场景下的检测精度。最后,使用峰值密度聚类算法(DPC)对行人的轨迹进行分析,来判断是否发生徘徊行为。并通过AdaFace人脸识别算法对徘徊的行人进行人脸匹配,来判断行人是否在不同时间段多次发生徘徊行为。实验表明,该方法单次徘徊检测的准确率到达了94.6%。行人多次徘徊检测的准确率到达了78.7%。
文摘密度峰值聚类(clustering by fast search and find of density peaks,DPC)算法是一种基于密度的聚类算法,它可以发现任意形状和维度的类簇,是具有里程碑意义的聚类算法。然而,DPC算法的样本局部密度定义不适用于同时发现数据集的稠密簇和稀疏簇;此外,DPC算法的一步分配策略使得一旦有一个样本分配错误,将导致更多样本的错误分配,产生“多米诺骨牌效应”。针对这些问题,提出一种新的样本局部密度定义,采用局部标准差指数定义样本局部密度,克服DPC的密度定义缺陷;采用两步分配策略代替DPC的一步分配策略,克服DPC的“多米诺骨牌效应”,得到ESDTS-DPC算法。与DPC及其改进算法KNN-DPC、FKNN-DPC、DPC-CE和经典密度聚类算法DBSCAN的实验比较显示,提出的ESDTS-DPC算法具有更好的聚类准确性。
文摘为提升时间序列的聚类精度,提出一种融合优化可调Q因子小波变换的改进密度峰值聚类(improved density peaks clustering based on optimal tunable Q-factor wavelet transform,OTQWT-IDPC)算法,该算法利用可调Q因子小波变换的能量优化选择策略及改进粒子群优化算法确定的最佳Q因子分解时序信号,通过最优特征子带的能量、均值、标准差和模糊熵构建特征子空间,并采用主成分分析降低特征维度,以减少特征冗余。同时,考虑到距离较远而周围密集程度较大的K近邻样本对局部密度的贡献率,引入权重系数及K近邻重新定义DPC的局部密度,并利用共享最近邻描述样本间的相似性。在BONN癫痫脑电信号和CWRU滚动轴承数据集上进行对比实验,结果表明,该算法的聚类精度分别为95%、94%,且Jacarrd、FMI和F_(1)值指标均优于其他对比算法,证明了OTQWT-IDPC算法的有效性。
文摘Tri-training利用无标签数据进行分类可有效提高分类器的泛化能力,但其易将无标签数据误标,从而形成训练噪声。提出一种基于密度峰值聚类的Tri-training(Tri-training with density peaks clustering,DPC-TT)算法。密度峰值聚类通过类簇中心和局部密度可选出数据空间结构表现较好的样本。DPC-TT算法采用密度峰值聚类算法获取训练数据的类簇中心和样本的局部密度,对类簇中心的截断距离范围内的样本认定为空间结构表现较好,标记为核心数据,使用核心数据更新分类器,可降低迭代过程中的训练噪声,进而提高分类器的性能。实验结果表明:相比于标准Tritraining算法及其改进算法,DPC-TT算法具有更好的分类性能。
文摘为解决用户群体移动轨迹划分和密度峰值聚类算法自身局限性的问题,以校园轨迹为对象,考虑时间和位置语义信息层面的信息,建立网络用户间的相似性度量模型,提出一种基于共享近邻贡献度的密度峰值聚类算法(density peak clustering based on shared nearest neighbor contribution,SNNC-DPC),结合信息熵理论,通过最小化局部密度熵自适应选择截断距离;在局部密度计算上,利用共享近邻贡献度重新计算局部密度,更加全面地反映数据分布的特性;采用非线性变换方法选取决策值,解决聚类中心选取困难且方法单一的问题。在真实校园轨迹数据集上实验,验证了改进算法的有效性。