期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Coarse-Grained Molecular Dynamics Study based on TorchMD 被引量:1
1
作者 Peijun Xu Xiaohong Mou +5 位作者 Qiuhan Guo Ting Fu Hong Ren Guiyan Wang Yan Li Guohui Li 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2021年第6期957-969,I0006,I0158-I0166,共23页
The coarse grained(CG)model implements the molecular dynamics simulation by simplifying atom properties and interaction between them.Despite losing certain detailed information,the CG model is still the first-thought ... The coarse grained(CG)model implements the molecular dynamics simulation by simplifying atom properties and interaction between them.Despite losing certain detailed information,the CG model is still the first-thought option to study the large molecule in long time scale with less computing resource.The deep learning model mainly mimics the human studying process to handle the network input as the image to achieve a good classification and regression result.In this work,the TorchMD,a MD framework combining the CG model and deep learning model,is applied to study the protein folding process.In 3D collective variable(CV)space,the modified find density peaks algorithm is applied to cluster the conformations from the TorchMD CG simulation.The center conformation in different states is searched.And the boundary conformations between clusters are assigned.The string algorithm is applied to study the path between two states,which are compared with the end conformations from all atoms simulations.The result shows that the main phenomenon of protein folding with TorchMD CG model is the same as the all-atom simulations,but with a less simulating time scale.The workflow in this work provides another option to study the protein folding and other relative processes with the deep learning CG model. 展开更多
关键词 Deep learning TorchMD Coarse grained Modified find density peaks STRING
下载PDF
基于时延序列特征的多局放源信号分离方法 被引量:5
2
作者 张锡洋 周文俊 +3 位作者 刘溟 邹建明 杨伟敏 喻剑辉 《电测与仪表》 北大核心 2019年第12期90-97,共8页
现有多局部放电(PD)源信号分离方法多采用PDUHF信号的时频差异作为特征参数进行多源信号分离,但在信噪比较低时分离准确率低。为此,文中提出了基于时延序列分布特征的多PD源信号分离方法,采用两支定向天线组成的旋转检测平台分析出时延... 现有多局部放电(PD)源信号分离方法多采用PDUHF信号的时频差异作为特征参数进行多源信号分离,但在信噪比较低时分离准确率低。为此,文中提出了基于时延序列分布特征的多PD源信号分离方法,采用两支定向天线组成的旋转检测平台分析出时延序列与天线阵列旋转角度满足余弦函数关系,以此对应关系为特征值进行多PD源信号分离。基于时域有限差分算法仿真了3个模拟PD源在不同信噪比时的分离准确率,与现有多源分离方法进行对比,当信噪比为5dB时,分离准确率从71%提升至95%。在220kV试验变电站内试验,结果表明多个PD源被准确地分离和定位,验证了该分离方法的有效性。 展开更多
关键词 局部放电 多源分离 时延序列 峰值-密度算法 定位
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部