首先根据生化微传感SOC的应用场合和微传感器的特点,选定CR SAR ADC作为片内嵌入类型;基于SOC的标准CMOS工艺实现和低功耗的设计目标,分别进行了电容阵列、比较器、开关阵列和SAR控制逻辑等组成单元全定制原理图、版图设计,实现了片内嵌...首先根据生化微传感SOC的应用场合和微传感器的特点,选定CR SAR ADC作为片内嵌入类型;基于SOC的标准CMOS工艺实现和低功耗的设计目标,分别进行了电容阵列、比较器、开关阵列和SAR控制逻辑等组成单元全定制原理图、版图设计,实现了片内嵌入10位ADC的整体芯片.流片实测结果DNL、INL最大值分别为+/-1.0LSB、+/-1.5LSB,功耗仅为4.62mW,满足生化微传感SOC数据转换的片内嵌入要求.展开更多
Virtualization is a common technology for resource sharing in data center. To make efficient use of data center resources, the key challenge is to map customer demands (modeled as virtual data center, VDC) to the ph...Virtualization is a common technology for resource sharing in data center. To make efficient use of data center resources, the key challenge is to map customer demands (modeled as virtual data center, VDC) to the physical data center effectively. In this paper, we focus on this problem. Distinct with previous works, our study of VDC embedding problem is under the assumption that switch resource is the bottleneck of data center networks (DCNs). To this end, we not only propose relative cost to evaluate embedding strategy, decouple embedding problem into VM placement with marginal resource assignment and virtual link mapping with decided source-destination based on the property of fat-tree, but also design the traffic aware embedding algorithm (TAE) and first fit virtual link mapping (FFLM) to map virtual data center requests to a physical data center. Simulation results show that TAE+FFLM could increase acceptance rate and reduce network cost (about 49% in the case) at the same time. The traffie aware embedding algorithm reduces the load of core-link traffic and brings the optimization opportunity for data center network energy conservation.展开更多
文摘首先根据生化微传感SOC的应用场合和微传感器的特点,选定CR SAR ADC作为片内嵌入类型;基于SOC的标准CMOS工艺实现和低功耗的设计目标,分别进行了电容阵列、比较器、开关阵列和SAR控制逻辑等组成单元全定制原理图、版图设计,实现了片内嵌入10位ADC的整体芯片.流片实测结果DNL、INL最大值分别为+/-1.0LSB、+/-1.5LSB,功耗仅为4.62mW,满足生化微传感SOC数据转换的片内嵌入要求.
基金This research was partially supported by the National Grand Fundamental Research 973 Program of China under Grant (No. 2013CB329103), Natural Science Foundation of China grant (No. 61271171), the Fundamental Research Funds for the Central Universities (ZYGX2013J002, ZYGX2012J004, ZYGX2010J002, ZYGX2010J009), Guangdong Science and Technology Project (2012B090500003, 2012B091000163, 2012556031).
文摘Virtualization is a common technology for resource sharing in data center. To make efficient use of data center resources, the key challenge is to map customer demands (modeled as virtual data center, VDC) to the physical data center effectively. In this paper, we focus on this problem. Distinct with previous works, our study of VDC embedding problem is under the assumption that switch resource is the bottleneck of data center networks (DCNs). To this end, we not only propose relative cost to evaluate embedding strategy, decouple embedding problem into VM placement with marginal resource assignment and virtual link mapping with decided source-destination based on the property of fat-tree, but also design the traffic aware embedding algorithm (TAE) and first fit virtual link mapping (FFLM) to map virtual data center requests to a physical data center. Simulation results show that TAE+FFLM could increase acceptance rate and reduce network cost (about 49% in the case) at the same time. The traffie aware embedding algorithm reduces the load of core-link traffic and brings the optimization opportunity for data center network energy conservation.