Porous metal architectures are widely adopted as three-dimensional conducting scaffolds for constructing Li metal composite anodes,whereas their macropores hinder their practical application due to limited surface are...Porous metal architectures are widely adopted as three-dimensional conducting scaffolds for constructing Li metal composite anodes,whereas their macropores hinder their practical application due to limited surface area and large pore size of few hundred micrometers.In this work,a network of Li_(x)Cu solid solution alloy nanowires is in situ formed via infiltrating molten Li-Cu alloy into Ni foam and subsequent cooling treatment,whereby a three-component composite anode consisting of Li metal,Li_(x)Cu alloy,and Ni foam is fabricated.The Li_(x)Cu nanowires nested as secondary frame split the macropores into micropores,enlarging the active surface area and inducing uniform Li deposition significantly.The lithiophilicity of the alloy wires and the shrunken void size built by the hierarchical architecture can further tune the nucleation and growth behavior of Li.The multiscale synergetic effect between the primary and secondary scaffold guarantees the composite anode sheet with extraordinarily long-term cycling stability even under high current rates.展开更多
基金partly supported by the National Natural Science Foundation of China(21673033)Sichuan Science and Technology Program(2020071)the Fundamental Research Founds for the Central Universities(ZYGX2019J024).
文摘Porous metal architectures are widely adopted as three-dimensional conducting scaffolds for constructing Li metal composite anodes,whereas their macropores hinder their practical application due to limited surface area and large pore size of few hundred micrometers.In this work,a network of Li_(x)Cu solid solution alloy nanowires is in situ formed via infiltrating molten Li-Cu alloy into Ni foam and subsequent cooling treatment,whereby a three-component composite anode consisting of Li metal,Li_(x)Cu alloy,and Ni foam is fabricated.The Li_(x)Cu nanowires nested as secondary frame split the macropores into micropores,enlarging the active surface area and inducing uniform Li deposition significantly.The lithiophilicity of the alloy wires and the shrunken void size built by the hierarchical architecture can further tune the nucleation and growth behavior of Li.The multiscale synergetic effect between the primary and secondary scaffold guarantees the composite anode sheet with extraordinarily long-term cycling stability even under high current rates.