This paper considers the post-J test inference in non-nested linear regression models. Post-J test inference means that the inference problem is considered by taking the first stage J test into account. We first propo...This paper considers the post-J test inference in non-nested linear regression models. Post-J test inference means that the inference problem is considered by taking the first stage J test into account. We first propose a post-J test estimator and derive its asymptotic distribution. We then consider the test problem of the unknown parameters, and a Wald statistic based on the post-J test estimator is proposed. A simulation study shows that the proposed Wald statistic works perfectly as well as the two-stage test from the view of the empirical size and power in large-sample cases, and when the sample size is small, it is even better. As a result,the new Wald statistic can be used directly to test the hypotheses on the unknown parameters in non-nested linear regression models.展开更多
基金supported by a General Research Fund from the Hong Kong Research Grants Council(Grant No.City U-102709)National Natural Science Foundation of China(Grant Nos.11331011and 11271355)the Hundred Talents Program of the Chinese Academy of Sciences
文摘This paper considers the post-J test inference in non-nested linear regression models. Post-J test inference means that the inference problem is considered by taking the first stage J test into account. We first propose a post-J test estimator and derive its asymptotic distribution. We then consider the test problem of the unknown parameters, and a Wald statistic based on the post-J test estimator is proposed. A simulation study shows that the proposed Wald statistic works perfectly as well as the two-stage test from the view of the empirical size and power in large-sample cases, and when the sample size is small, it is even better. As a result,the new Wald statistic can be used directly to test the hypotheses on the unknown parameters in non-nested linear regression models.