Objective: To develop a sensitive, specific and simple method for detection of extremely low numbers of T. pallidum in clinical specimens, as a significant addition to the serologic tests for syphilis diagnosis. Metho...Objective: To develop a sensitive, specific and simple method for detection of extremely low numbers of T. pallidum in clinical specimens, as a significant addition to the serologic tests for syphilis diagnosis. Methods: Double-tube nested PCR(DN-PCR) and single-tube nested PCR(SN-PCR) assays were performed to amplify specific fragments of the DNA poly-merase I gene(polA) of T. pallidum. Sensitivity and specificity of the two PCR assays were tested. Eighty-six whole blood specimens from persons with suspected syphilis were detected by the two nested PCR methods. The TPPA test was used as a comparison for detecting syphilis in sera from corresponding patients. Results: Only specific amplicons could be obtained during amplification of the T. pallidum polA gene and the detection limit was approximately 1 organism when analyzed on gel by the two PCR methods. Of 86 clinical specimens, 62 were positive by TPPA. Of these, 54 and 51 were positive by the DN-PCR and SN-PCR, respectively, which does not represent a statistically significant difference between the two PCR tests. Of 24 TPPA-negative specimens, 5 were positive by both DN-PCR assay and SN-PCR assay. Conclusion: The SN- polA PCR method is extremely sensitive, specific and easy to perform for detecting low numbers of T. pallidum in clinical blood specimens as a complementary to serology for syphilis diagnosis.展开更多
A parallel embedding overlapped iterative (EOI) algorithm about classicimplicit equations with asymmetric Saul'yev schemes (CIS-EOI) to solve one-dimensional diffusionequations is discussed to improve the properti...A parallel embedding overlapped iterative (EOI) algorithm about classicimplicit equations with asymmetric Saul'yev schemes (CIS-EOI) to solve one-dimensional diffusionequations is discussed to improve the properties of the segment classic implicit iterative (SCII)algorithm. The structure of CIS-EOI method is given and the stability of scheme and convergence ofiteration are proved by matrix method. The property of gradual-approach convergence is alsodiscussed. It has been shown that the convergent rate is faster and the property of gradual-approachconvergence also becomes better with the increasing of the net point in subsystems than with theSCII algorithm. The simulation examples show that the parallel iterative algorithm with a differentinsertion scheme CIS-EOI is more effective.展开更多
文摘Objective: To develop a sensitive, specific and simple method for detection of extremely low numbers of T. pallidum in clinical specimens, as a significant addition to the serologic tests for syphilis diagnosis. Methods: Double-tube nested PCR(DN-PCR) and single-tube nested PCR(SN-PCR) assays were performed to amplify specific fragments of the DNA poly-merase I gene(polA) of T. pallidum. Sensitivity and specificity of the two PCR assays were tested. Eighty-six whole blood specimens from persons with suspected syphilis were detected by the two nested PCR methods. The TPPA test was used as a comparison for detecting syphilis in sera from corresponding patients. Results: Only specific amplicons could be obtained during amplification of the T. pallidum polA gene and the detection limit was approximately 1 organism when analyzed on gel by the two PCR methods. Of 86 clinical specimens, 62 were positive by TPPA. Of these, 54 and 51 were positive by the DN-PCR and SN-PCR, respectively, which does not represent a statistically significant difference between the two PCR tests. Of 24 TPPA-negative specimens, 5 were positive by both DN-PCR assay and SN-PCR assay. Conclusion: The SN- polA PCR method is extremely sensitive, specific and easy to perform for detecting low numbers of T. pallidum in clinical blood specimens as a complementary to serology for syphilis diagnosis.
文摘A parallel embedding overlapped iterative (EOI) algorithm about classicimplicit equations with asymmetric Saul'yev schemes (CIS-EOI) to solve one-dimensional diffusionequations is discussed to improve the properties of the segment classic implicit iterative (SCII)algorithm. The structure of CIS-EOI method is given and the stability of scheme and convergence ofiteration are proved by matrix method. The property of gradual-approach convergence is alsodiscussed. It has been shown that the convergent rate is faster and the property of gradual-approachconvergence also becomes better with the increasing of the net point in subsystems than with theSCII algorithm. The simulation examples show that the parallel iterative algorithm with a differentinsertion scheme CIS-EOI is more effective.