Heterogeneous catalysts are promising candidates for use in organic reactions due to their advantages in separation, recovery, and environment compatibility. In this work, an active porous catalyst denoted as Pd embed...Heterogeneous catalysts are promising candidates for use in organic reactions due to their advantages in separation, recovery, and environment compatibility. In this work, an active porous catalyst denoted as Pd embedded in porous carbon (Pd@CMK-3) has been prepared by a strategy involving immersion, ammonia- hydrolysis, and heating procedures. Detailed characterization of the catalyst revealed that Pd(0) and Pd(I1) species co-exist and were embedded in the matrix of the porous carbon (CMK-3). The as-prepared catalyst has shown high activity toward Suzuki reactions. Importantly, if the reaction mixture was homogenized by two minutes of ultrasonication rather than magnetic stirring before heating, the resistance to mass transfer in the pore channels was significantly reduced. As a result, the reactions proceeded more rapidly and a four-fold increase in the turnover frequency (TOF) could be obtained. When the ultrasonication was employed throughout the entire reaction process, the conversion could also exceed 90% even without the protection of inert gas, and although the reaction temperature was lowered to 30 ℃. This work provides a method for fabricating highly active porous carbon encapsulated Pd catalysts for Suzuki reactions and proves that the problem of mass transfer in porous catalysts can be conveniently resolved by ultrasonication without any chemical modification being necessary.展开更多
This paper studies the dynamic shell buckling behavior of multi-walled carbon nanotubes(MWNTs) embedded in an elastic medium under step axial load based on continuum mechanics model.It is shown that,for occurrence of ...This paper studies the dynamic shell buckling behavior of multi-walled carbon nanotubes(MWNTs) embedded in an elastic medium under step axial load based on continuum mechanics model.It is shown that,for occurrence of dynamic shell buckling of MWNTs or MWNTs embedded in an elastic medium,the buckling stress is higher than the critical buckling stress of the corresponding static shell buckling under otherwise identical conditions.Detailed results are demonstrated for dynamic shell buckling of individual double-walled carbon nanotubes(DWNTs) or DWNTs embedded in an elastic medium.A phenomenon is shown that DWNTs or embedded DWNTs in dynamic shell buckling are prone to axisymmetric buckling rather than non-axisymmetric buckling.Numerical results also indicate that the axial buckling form shifts from the lower buckling mode to the higher buckling mode with increasing buckling stress,but the buckling mode is invariable for a certain domain of buckling stress.Further,an approximate analytic formula is presented for the buckling stress and the associated buckling wavelength for dynamic axisymmetric buckling of embedded DWNTs.The effect of radii is also examined.展开更多
Semiconductor nanomaterials with photocatalytic activity have potential for many applications. An effective way of promoting photocatalytic activity is depositing noble metal nanoparticles (NPs) on a semiconductor, ...Semiconductor nanomaterials with photocatalytic activity have potential for many applications. An effective way of promoting photocatalytic activity is depositing noble metal nanoparticles (NPs) on a semiconductor, since the noble metal NPs act as excellent electron acceptors which inhibit the quick recombination of the photoexcited electron-hole pairs and thereby enhance the generation of reactive oxygen species (ROS). Herein, a highly effective platform, graphitic carbon nitride (g-C3N4) nanosheets with embedded Ag nanopartides (Ag/g-C3N4), was synthesized by a facile route. Under visible light irradiation, the ROS production of Ag/g-C3N4 nanohybrids was greatly improved compared with pristine g-C3N4 nanosheets, and moreover, the nanohybrids showed enhanced antibacterial efficacy and ability to disperse bacterial biofilms. We demonstrate for the first time that the Ag/g-C3N4 nanohybrids are efficient bactericidal agents under visible light irradiation, and can also provide a new way for biofilm elimination. The enhanced antibacterial properties and biofilm-disrupting ability of Ag/g-C3N4 nanohybrids may offer many biomedical applications.展开更多
文摘Heterogeneous catalysts are promising candidates for use in organic reactions due to their advantages in separation, recovery, and environment compatibility. In this work, an active porous catalyst denoted as Pd embedded in porous carbon (Pd@CMK-3) has been prepared by a strategy involving immersion, ammonia- hydrolysis, and heating procedures. Detailed characterization of the catalyst revealed that Pd(0) and Pd(I1) species co-exist and were embedded in the matrix of the porous carbon (CMK-3). The as-prepared catalyst has shown high activity toward Suzuki reactions. Importantly, if the reaction mixture was homogenized by two minutes of ultrasonication rather than magnetic stirring before heating, the resistance to mass transfer in the pore channels was significantly reduced. As a result, the reactions proceeded more rapidly and a four-fold increase in the turnover frequency (TOF) could be obtained. When the ultrasonication was employed throughout the entire reaction process, the conversion could also exceed 90% even without the protection of inert gas, and although the reaction temperature was lowered to 30 ℃. This work provides a method for fabricating highly active porous carbon encapsulated Pd catalysts for Suzuki reactions and proves that the problem of mass transfer in porous catalysts can be conveniently resolved by ultrasonication without any chemical modification being necessary.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11172304,11202210,11021262 and 10972010)the National Basic Research Program of China (Grant No. 2012CB937500)
文摘This paper studies the dynamic shell buckling behavior of multi-walled carbon nanotubes(MWNTs) embedded in an elastic medium under step axial load based on continuum mechanics model.It is shown that,for occurrence of dynamic shell buckling of MWNTs or MWNTs embedded in an elastic medium,the buckling stress is higher than the critical buckling stress of the corresponding static shell buckling under otherwise identical conditions.Detailed results are demonstrated for dynamic shell buckling of individual double-walled carbon nanotubes(DWNTs) or DWNTs embedded in an elastic medium.A phenomenon is shown that DWNTs or embedded DWNTs in dynamic shell buckling are prone to axisymmetric buckling rather than non-axisymmetric buckling.Numerical results also indicate that the axial buckling form shifts from the lower buckling mode to the higher buckling mode with increasing buckling stress,but the buckling mode is invariable for a certain domain of buckling stress.Further,an approximate analytic formula is presented for the buckling stress and the associated buckling wavelength for dynamic axisymmetric buckling of embedded DWNTs.The effect of radii is also examined.
基金This work was supported by the National Basic Research Program of China (Nos. 2011CB936004 and 2012CB720602) and the National Natural Science Foundation of China (Nos. 21210002, 21431007, 91413111, 21402183).
文摘Semiconductor nanomaterials with photocatalytic activity have potential for many applications. An effective way of promoting photocatalytic activity is depositing noble metal nanoparticles (NPs) on a semiconductor, since the noble metal NPs act as excellent electron acceptors which inhibit the quick recombination of the photoexcited electron-hole pairs and thereby enhance the generation of reactive oxygen species (ROS). Herein, a highly effective platform, graphitic carbon nitride (g-C3N4) nanosheets with embedded Ag nanopartides (Ag/g-C3N4), was synthesized by a facile route. Under visible light irradiation, the ROS production of Ag/g-C3N4 nanohybrids was greatly improved compared with pristine g-C3N4 nanosheets, and moreover, the nanohybrids showed enhanced antibacterial efficacy and ability to disperse bacterial biofilms. We demonstrate for the first time that the Ag/g-C3N4 nanohybrids are efficient bactericidal agents under visible light irradiation, and can also provide a new way for biofilm elimination. The enhanced antibacterial properties and biofilm-disrupting ability of Ag/g-C3N4 nanohybrids may offer many biomedical applications.