N-component Bariev model for correlated hopping under open boundary conditions in one dimension is studied in the framework of Bethe ansatz method. The energy spectrum and the related Bethe ansatz equations are obtained.
Two cases of the nested configurations in R3 consisting of two regular quadrilaterals are discussed. One case of them do not form central configuration, the other case can be central configuration. In the second case ...Two cases of the nested configurations in R3 consisting of two regular quadrilaterals are discussed. One case of them do not form central configuration, the other case can be central configuration. In the second case the existence and uniqueness of the central configuration are studied. If the configuration is a central configuration, then all masses of outside layer are equivalent, similar to the masses of inside layer. At the same time the following relation between r(the ratio of the sizes) and mass ratio b = m/m must be satisfied in which the masses at outside layer are not less than the masses at inside layer, and the solution of this kind of central configuration is unique for the given ratio (6) of masses.展开更多
In this paper, we show that for a locally LEW-embedded 3-connected graph G in orientable surface, the following results hold: 1) Each of such embeddings is minimum genus embedding; 2) The facial cycles are precisel...In this paper, we show that for a locally LEW-embedded 3-connected graph G in orientable surface, the following results hold: 1) Each of such embeddings is minimum genus embedding; 2) The facial cycles are precisely the induced nonseparating cycles which implies the uniqueness of such embeddings; 3) Every overlap graph O(G, C) is a bipartite graph and G has only one C-bridge H such that C U H is nonplanar provided C is a contractible cycle shorter than every noncontractible cycle containing an edge of C. This extends the results of C Thomassen's work on LEW-embedded graphs.展开更多
文摘N-component Bariev model for correlated hopping under open boundary conditions in one dimension is studied in the framework of Bethe ansatz method. The energy spectrum and the related Bethe ansatz equations are obtained.
基金Supported by the NSF of China(10231010)Supported by the NSF of CQSXXY (20030104)
文摘Two cases of the nested configurations in R3 consisting of two regular quadrilaterals are discussed. One case of them do not form central configuration, the other case can be central configuration. In the second case the existence and uniqueness of the central configuration are studied. If the configuration is a central configuration, then all masses of outside layer are equivalent, similar to the masses of inside layer. At the same time the following relation between r(the ratio of the sizes) and mass ratio b = m/m must be satisfied in which the masses at outside layer are not less than the masses at inside layer, and the solution of this kind of central configuration is unique for the given ratio (6) of masses.
基金Supported by NNSF of China(10271048,10671073)Supported by Science and Technology Commission of Shanghai Municipality(07XD14011)Supported by Shanghai Leading Academic Discipline Project(B407)
文摘In this paper, we show that for a locally LEW-embedded 3-connected graph G in orientable surface, the following results hold: 1) Each of such embeddings is minimum genus embedding; 2) The facial cycles are precisely the induced nonseparating cycles which implies the uniqueness of such embeddings; 3) Every overlap graph O(G, C) is a bipartite graph and G has only one C-bridge H such that C U H is nonplanar provided C is a contractible cycle shorter than every noncontractible cycle containing an edge of C. This extends the results of C Thomassen's work on LEW-embedded graphs.