In order to resolve the conflict between the limited resources of embedded devices and the growing amount of massive image data to be shown, a solution for fast images rendering in embedded devices is proposed and imp...In order to resolve the conflict between the limited resources of embedded devices and the growing amount of massive image data to be shown, a solution for fast images rendering in embedded devices is proposed and implemented. First, an improved algorithm of a multi-resolution file-pyramid construction which is used for the organization of massive image data is presented. Then, a strategy, adopting technologies such as view-dependent levels of detail, target-tiles quick search and tiles seamless connection, is presented for fast scheduling and viewing of images. The results show that compared with the solution of multi-scale image representations based on wavelet, the proposed solution can improve the rendering speed, and the rendering speed does not depend on the image size, though it increases some data storage space. And the proposed solution is suitable for embedded devices and friendly experience.展开更多
The plastic deformation processes of magnesium alloys near a void at atomic scale level were examined through molecular dynamics(MD)simulation.The modified embedded atom method(MEAM)potentials were employed to charact...The plastic deformation processes of magnesium alloys near a void at atomic scale level were examined through molecular dynamics(MD)simulation.The modified embedded atom method(MEAM)potentials were employed to characterize the interaction between atoms of the magnesium alloy specimen with only a void.The void growth and crystal failure processes for hexagonal close-packed(hcp)structure were observed.The calculating results reveal that the deformation mechanism near a void in magnesium alloy is a complex process.The passivation around the void,dislocation emission,and coalescence of the void and micro-cavities lead to rapid void growth.展开更多
Nb-doped TiAl alloys exhibit excellent mechanical properties at high temperatures,and the underlying mechanism and optimal doping amount remain elusive.Molecular dynamics simulation is helpful to clarify these problem...Nb-doped TiAl alloys exhibit excellent mechanical properties at high temperatures,and the underlying mechanism and optimal doping amount remain elusive.Molecular dynamics simulation is helpful to clarify these problems,but most of the existing interatomic potentials are limited to the Ti-Al binary system and lack interatomic potentials for doped alloys.Here,an intera-tomic potential of Nb-Al-Ti ternary systems based on the modified embedded-atom method was developed.The ternary potential can accurately predict the structure and thermodynamic properties of the Nb-Al-Ti system.The potential shows that the optimal Nb content for high-temperature strength-ductility synergy of TiAl single crystals is 8%,consistent with the amount of miracle synthesis of TiAl single crystals.Tensile simulations further show that the developed potential can make an effective prediction at high temperatures,indicating the potential for the development and applications of high-temperature Nb-Al-Ti ternary systems.展开更多
Lithographically defined microporous templates in conjunction with the atomic layer deposition (ALD) technique enable remarkable control of complex novel nested nanotube structures. So far three-dimensional control ...Lithographically defined microporous templates in conjunction with the atomic layer deposition (ALD) technique enable remarkable control of complex novel nested nanotube structures. So far three-dimensional control of physical process parameters has not been fully realized with high precision resolution, and requires optimization in order to achieve a wider range of potential applications. Furthermore, the combination of composite insulating oxide layers alternating with semiconducting layers and metals can provide various types of novel applications and eventually provide unique and advanced levels of multifunctional nanoscale devices. Semiconducting TiO2 nanotubes have potential applications in photovoltaic devices. The combination of nanostructured semiconducting materials with nested metal nanotubes has the potential to produce novel multi functional vertically-ordered three-dimensional nanodevices. Platinum growth by ALD has been explored, covering the initial stages of the thin film nucleation process and the synthesis of high aspect ratio nanotube structures. The penetration depth of the Pt into porous templates having various pore sizes and aspect ratios has been investigated. Several multi-walled nested TiO2-Pt nanotubes in series have been successfully fabricated using microporous Si templates. These innovative nested nanostructures have the potential to produce novel multifunctional vertically-ordered three-dimensional nanodevices in photovoltaic and sensing technologies.展开更多
A subgroup H of a finite group G is said to be CAP-embedded subgroup of G if, for each prime p dividing the order of H, there exists a CAP-subgroup K of G such that a Sylow p-subgroup of H is also a Sylow p-subgroup o...A subgroup H of a finite group G is said to be CAP-embedded subgroup of G if, for each prime p dividing the order of H, there exists a CAP-subgroup K of G such that a Sylow p-subgroup of H is also a Sylow p-subgroup of K. In this paper some new results are obtained based on the assumption that some subgroups of prime power order have the CAP-embedded property in the group.展开更多
Developing high-performance bifunctional catalysts toward hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is essential to enhance water splitting efficiency for large-scale hydrogen production. Nei...Developing high-performance bifunctional catalysts toward hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is essential to enhance water splitting efficiency for large-scale hydrogen production. Neither noble metal Pt nor transition metal compounds show satisfactory performances for both HER and OER simultaneously. Here, we prepared a three-dimensional Pt-Ni3 Se2@NiOOH/NF(PNOF) hybrid catalyst via in-situ growth strategy. Benefitting from the self-supported structure and oxygen vacancies on the surface of NiOOH nanosheets, the PNOF electrode shows remarkably catalytic performance for dual HER and OER. The overall water electrolyzer using PNOF as anode and cathode can achieve a current density of10 mA cm^-2 at a low voltage of 1.52 V with excellent long-term stability, which is superior to precious metal catalysts of Pt/C and Ir/C. This study provides a promising strategy for preparing bifunctional catalysts with high performance.展开更多
Restraining the aggregation and polysulfide dissolution of edge-enriched metal sulfides is of significance for their applications as anode materials of lithium-ion batteries(LIBs)with high capacity and long cycle-life...Restraining the aggregation and polysulfide dissolution of edge-enriched metal sulfides is of significance for their applications as anode materials of lithium-ion batteries(LIBs)with high capacity and long cycle-life.In this work,we have reported the incorporation of MoS2 nanocrystals into amorphous carbon on the surface of reduced graphene oxide(rGO)by balancing the decomposition rates of phenolic resin(PF)-impregnated ammonium thiomolybdate(ATM),which subsequently forms the MoS2@C/rGO film through redispersion and vacuum filtration.Such structural design effectively avoids the aggregation of MoS2 nanocrystals and Li2S loss,and meanwhile ion enrichment in amorphous carbon and diffusion reinforcement can greatly accelerate the electrochemical reaction kinetics.When applied as the selfstanding anode,the MoS2@C/rGO film possesses high reversible capacities of 1164 mA h g^-1 at the current density of 0.2 A g^-1 and 810 mA h g^-1 at 6.4 A g^-1.It also exhibits quite a high capacity retention after 1000 cycles at 3.2 A g^-1.This work develops the formation theory of incorporation structures and promotes their applications in energy storage devices.展开更多
An ordered nanostructure formed by epitaxial crystallization of a semicrystalline block copolymer on a substrate has been used as a patterned template for the selective deposition of thermally evaporated gold nanopart...An ordered nanostructure formed by epitaxial crystallization of a semicrystalline block copolymer on a substrate has been used as a patterned template for the selective deposition of thermally evaporated gold nanoparticles, resulting in the formation of structure-guiding host nanocomposites in which the ordered distribution of the guest particles is guided by the ordering of the host nanostructured block copolymer matrix. This opens new perspectives in the field of polymeric composites related to the maximum enhancement of effective physical properties and to the numerous possible applications that arise due to the presence of long-range order in the spatial distribution of functional nanoparticles.展开更多
Organic phosphorescence materials with longlived triplet excitons that can highly generate active singlet oxygen(1O2) through the energy transfer with the molecular oxygen under photoexcitation, serve as highly effici...Organic phosphorescence materials with longlived triplet excitons that can highly generate active singlet oxygen(1O2) through the energy transfer with the molecular oxygen under photoexcitation, serve as highly efficient antibacterial agent. Herein, we report bright red-emissive organic phosphorescent nanoparticles(PNPs) based on a metal-free organic phosphor encapsulated with biocompatible block copolymers. The obtained PNPs with an ultra-small particle size of around 5 nm and a long emission lifetime of up to 167 μs showed effective 1O2 generation ability under visible light(410 nm) excitation in aqueous media, which can efficiently eradicate multi-drug resistant bacteria both in vitro and in vivo. This is the first demonstration of metal-free organic PNPs for photodynamic antimicrobial therapy, expanding the application scope of metal-free organic room temperature phosphorescent materials.展开更多
Porous metal architectures are widely adopted as three-dimensional conducting scaffolds for constructing Li metal composite anodes,whereas their macropores hinder their practical application due to limited surface are...Porous metal architectures are widely adopted as three-dimensional conducting scaffolds for constructing Li metal composite anodes,whereas their macropores hinder their practical application due to limited surface area and large pore size of few hundred micrometers.In this work,a network of Li_(x)Cu solid solution alloy nanowires is in situ formed via infiltrating molten Li-Cu alloy into Ni foam and subsequent cooling treatment,whereby a three-component composite anode consisting of Li metal,Li_(x)Cu alloy,and Ni foam is fabricated.The Li_(x)Cu nanowires nested as secondary frame split the macropores into micropores,enlarging the active surface area and inducing uniform Li deposition significantly.The lithiophilicity of the alloy wires and the shrunken void size built by the hierarchical architecture can further tune the nucleation and growth behavior of Li.The multiscale synergetic effect between the primary and secondary scaffold guarantees the composite anode sheet with extraordinarily long-term cycling stability even under high current rates.展开更多
基金The National Public Benefit Research Foundation of China (No. 201111013-02)
文摘In order to resolve the conflict between the limited resources of embedded devices and the growing amount of massive image data to be shown, a solution for fast images rendering in embedded devices is proposed and implemented. First, an improved algorithm of a multi-resolution file-pyramid construction which is used for the organization of massive image data is presented. Then, a strategy, adopting technologies such as view-dependent levels of detail, target-tiles quick search and tiles seamless connection, is presented for fast scheduling and viewing of images. The results show that compared with the solution of multi-scale image representations based on wavelet, the proposed solution can improve the rendering speed, and the rendering speed does not depend on the image size, though it increases some data storage space. And the proposed solution is suitable for embedded devices and friendly experience.
基金Project(10776023)supported by the National Natural Science Foundation of China
文摘The plastic deformation processes of magnesium alloys near a void at atomic scale level were examined through molecular dynamics(MD)simulation.The modified embedded atom method(MEAM)potentials were employed to characterize the interaction between atoms of the magnesium alloy specimen with only a void.The void growth and crystal failure processes for hexagonal close-packed(hcp)structure were observed.The calculating results reveal that the deformation mechanism near a void in magnesium alloy is a complex process.The passivation around the void,dislocation emission,and coalescence of the void and micro-cavities lead to rapid void growth.
基金the National Key Research and Development Program of China(Grant No.2019YF40705400)National Natural Science Foundation of China(Grant Nos.51535005,51731006,and 51771093)+2 种基金the Research Fund of State Key Laboratory of Mechanics and Control of Me-chanical Structures(Grant Nos.MCMS-I-0418K01,MCMS-I-0419K01)the Fundamental Research Funds for the Central Universities(Grant Nos.NZ2020001,NC2018001,NP2019301,NJ20I 9002,and 30919011295)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Nb-doped TiAl alloys exhibit excellent mechanical properties at high temperatures,and the underlying mechanism and optimal doping amount remain elusive.Molecular dynamics simulation is helpful to clarify these problems,but most of the existing interatomic potentials are limited to the Ti-Al binary system and lack interatomic potentials for doped alloys.Here,an intera-tomic potential of Nb-Al-Ti ternary systems based on the modified embedded-atom method was developed.The ternary potential can accurately predict the structure and thermodynamic properties of the Nb-Al-Ti system.The potential shows that the optimal Nb content for high-temperature strength-ductility synergy of TiAl single crystals is 8%,consistent with the amount of miracle synthesis of TiAl single crystals.Tensile simulations further show that the developed potential can make an effective prediction at high temperatures,indicating the potential for the development and applications of high-temperature Nb-Al-Ti ternary systems.
文摘Lithographically defined microporous templates in conjunction with the atomic layer deposition (ALD) technique enable remarkable control of complex novel nested nanotube structures. So far three-dimensional control of physical process parameters has not been fully realized with high precision resolution, and requires optimization in order to achieve a wider range of potential applications. Furthermore, the combination of composite insulating oxide layers alternating with semiconducting layers and metals can provide various types of novel applications and eventually provide unique and advanced levels of multifunctional nanoscale devices. Semiconducting TiO2 nanotubes have potential applications in photovoltaic devices. The combination of nanostructured semiconducting materials with nested metal nanotubes has the potential to produce novel multi functional vertically-ordered three-dimensional nanodevices. Platinum growth by ALD has been explored, covering the initial stages of the thin film nucleation process and the synthesis of high aspect ratio nanotube structures. The penetration depth of the Pt into porous templates having various pore sizes and aspect ratios has been investigated. Several multi-walled nested TiO2-Pt nanotubes in series have been successfully fabricated using microporous Si templates. These innovative nested nanostructures have the potential to produce novel multifunctional vertically-ordered three-dimensional nanodevices in photovoltaic and sensing technologies.
基金the National Natural Science Foundation of China (No.10771132)iangsu "Qing-lan Project" for Excellent Young Teachers in University (2006)
文摘A subgroup H of a finite group G is said to be CAP-embedded subgroup of G if, for each prime p dividing the order of H, there exists a CAP-subgroup K of G such that a Sylow p-subgroup of H is also a Sylow p-subgroup of K. In this paper some new results are obtained based on the assumption that some subgroups of prime power order have the CAP-embedded property in the group.
基金supported by the National Natural Science Foundation of China(51804216,51472178 and U1601216)Tianjin Natural Science Foundation(16JCYBJC17600)and Shen-zhen Science and Technology Foundation(JCYJ20170307145703486)
文摘Developing high-performance bifunctional catalysts toward hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is essential to enhance water splitting efficiency for large-scale hydrogen production. Neither noble metal Pt nor transition metal compounds show satisfactory performances for both HER and OER simultaneously. Here, we prepared a three-dimensional Pt-Ni3 Se2@NiOOH/NF(PNOF) hybrid catalyst via in-situ growth strategy. Benefitting from the self-supported structure and oxygen vacancies on the surface of NiOOH nanosheets, the PNOF electrode shows remarkably catalytic performance for dual HER and OER. The overall water electrolyzer using PNOF as anode and cathode can achieve a current density of10 mA cm^-2 at a low voltage of 1.52 V with excellent long-term stability, which is superior to precious metal catalysts of Pt/C and Ir/C. This study provides a promising strategy for preparing bifunctional catalysts with high performance.
基金supported by the National Natural Science Foundation of China(21975074 and 21838003)the Basic Research Program of Shanghai(17JC1402300)+1 种基金Shanghai Scientific and Technological Innovation Project(18JC1410500)the Fundamental Research Funds for the Central Universities(222201718002)。
文摘Restraining the aggregation and polysulfide dissolution of edge-enriched metal sulfides is of significance for their applications as anode materials of lithium-ion batteries(LIBs)with high capacity and long cycle-life.In this work,we have reported the incorporation of MoS2 nanocrystals into amorphous carbon on the surface of reduced graphene oxide(rGO)by balancing the decomposition rates of phenolic resin(PF)-impregnated ammonium thiomolybdate(ATM),which subsequently forms the MoS2@C/rGO film through redispersion and vacuum filtration.Such structural design effectively avoids the aggregation of MoS2 nanocrystals and Li2S loss,and meanwhile ion enrichment in amorphous carbon and diffusion reinforcement can greatly accelerate the electrochemical reaction kinetics.When applied as the selfstanding anode,the MoS2@C/rGO film possesses high reversible capacities of 1164 mA h g^-1 at the current density of 0.2 A g^-1 and 810 mA h g^-1 at 6.4 A g^-1.It also exhibits quite a high capacity retention after 1000 cycles at 3.2 A g^-1.This work develops the formation theory of incorporation structures and promotes their applications in energy storage devices.
文摘An ordered nanostructure formed by epitaxial crystallization of a semicrystalline block copolymer on a substrate has been used as a patterned template for the selective deposition of thermally evaporated gold nanoparticles, resulting in the formation of structure-guiding host nanocomposites in which the ordered distribution of the guest particles is guided by the ordering of the host nanostructured block copolymer matrix. This opens new perspectives in the field of polymeric composites related to the maximum enhancement of effective physical properties and to the numerous possible applications that arise due to the presence of long-range order in the spatial distribution of functional nanoparticles.
基金supported by the National Key R&D Program of China (2018YFC1105402 and 2017YFA0207202)the National Natural Science Foundation of China (21975120, 21875104, 51673095 and 21875189)+3 种基金the National Basic Research Program of China (973 Program, 2015CB932200)the Natural Science Fund for Distinguished Young Scholars of Jiangsu Province (BK20180037)the Natural Science Fund for Colleges and Universities of Jiangsu Province (17KJB430020)the Key R&D Program of Jiangsu Province (BE2017740)
文摘Organic phosphorescence materials with longlived triplet excitons that can highly generate active singlet oxygen(1O2) through the energy transfer with the molecular oxygen under photoexcitation, serve as highly efficient antibacterial agent. Herein, we report bright red-emissive organic phosphorescent nanoparticles(PNPs) based on a metal-free organic phosphor encapsulated with biocompatible block copolymers. The obtained PNPs with an ultra-small particle size of around 5 nm and a long emission lifetime of up to 167 μs showed effective 1O2 generation ability under visible light(410 nm) excitation in aqueous media, which can efficiently eradicate multi-drug resistant bacteria both in vitro and in vivo. This is the first demonstration of metal-free organic PNPs for photodynamic antimicrobial therapy, expanding the application scope of metal-free organic room temperature phosphorescent materials.
基金partly supported by the National Natural Science Foundation of China(21673033)Sichuan Science and Technology Program(2020071)the Fundamental Research Founds for the Central Universities(ZYGX2019J024).
文摘Porous metal architectures are widely adopted as three-dimensional conducting scaffolds for constructing Li metal composite anodes,whereas their macropores hinder their practical application due to limited surface area and large pore size of few hundred micrometers.In this work,a network of Li_(x)Cu solid solution alloy nanowires is in situ formed via infiltrating molten Li-Cu alloy into Ni foam and subsequent cooling treatment,whereby a three-component composite anode consisting of Li metal,Li_(x)Cu alloy,and Ni foam is fabricated.The Li_(x)Cu nanowires nested as secondary frame split the macropores into micropores,enlarging the active surface area and inducing uniform Li deposition significantly.The lithiophilicity of the alloy wires and the shrunken void size built by the hierarchical architecture can further tune the nucleation and growth behavior of Li.The multiscale synergetic effect between the primary and secondary scaffold guarantees the composite anode sheet with extraordinarily long-term cycling stability even under high current rates.