Biology is a rich source of great ideas that can inspire us to find successful ways to solve the challenging problems in engineering practices including those in the chemical industry. Bio-inspired chemical engineerin...Biology is a rich source of great ideas that can inspire us to find successful ways to solve the challenging problems in engineering practices including those in the chemical industry. Bio-inspired chemical engineering(Bio Ch E)may be recognized as a significant branch of chemical engineering. It may consist of, but not limited to, the following three aspects: 1) Chemical engineering principles and unit operations in biological systems; 2) Process engineering principles for producing existing or developing new chemical products through living ‘devices';and 3) Chemical engineering processes and equipment that are designed and constructed through mimicking(does not have to reproduce one hundred percent) the biological systems including their physical–chemical and mechanical structures to deliver uniquely beneficial performances. This may also include the bio-inspired sensors for process monitoring. In this paper, the above aspects are defined and discussed which establishes the scope of BioChE.展开更多
Batch processes are important in chemical industry,in which operators usually play a major role and hazards may arise by their inadvertent acts.In this paper,based on hazard and operability study and concept of qualit...Batch processes are important in chemical industry,in which operators usually play a major role and hazards may arise by their inadvertent acts.In this paper,based on hazard and operability study and concept of qualitative simulation,an automatic method for adverse consequence identification for potential maloperation is proposed.The qualitative model for production process is expressed by a novel directed graph.Possible operation deviations from normal operating procedure are identified systematically by using a group of guidewords.The proposed algorithm is used for qualitative simulation of batch processes to identify the effects of maloperations.The method is illustrated with a simple batch process and a batch reaction process.The results show that batch processes can be simulated qualitatively and hazards can be identified for operating procedures including maloperations.After analysis for possible plant maloperations,some measures can be taken to avoid maloperations or reduce losses resulted from maloperations.展开更多
To adapt to the change in the demand of the oil refining market,two hydrocracking catalysts,RHC-1 and RHC-5,were developed to improve the quality of tail oil.The catalysts were designed based on the theory of selectiv...To adapt to the change in the demand of the oil refining market,two hydrocracking catalysts,RHC-1 and RHC-5,were developed to improve the quality of tail oil.The catalysts were designed based on the theory of selective ring-opening.By selecting more acidic molecular sieves,the problem of poor selectivity of conventional materials can be solved to properly match up to the hydrogenation performance of catalysts.Compared with the performance of previous catalysts,the quality of the tail oil achieved by the said catalysts is better,and the BMCI is reduced by 1—2 units.In the long cycle operation of the petroleum industry,the good quality of the tail oil has been verified and the adaptability of the process conditions is good.When the RHC-1 catalyst is used to process heavy feed under medium pressure,a BMCI value of about12 can be obtained along with a nearly 60%yield of tail oil.The total yield of chemical raw material(steaming cracking feed+catalytic reforming feed)can exceed 80%,and the hydrogen consumption has dropped by nearly 50%as compared to the conventional hydrocracking conversion rate.When processing a mixed CGO and VGO feed with the full conversion mode under a hydrogen pressure of 13.0 MPa,the RHC-5 catalyst can yield about 68.4%of heavy naphtha with a potential aromatic content of up to 50.6,while the total yield of chemical raw materials can reach more than 98%.The results of industrial application of these catalysts show that more than 30%of high quality tail oil can be obtained via processing of inferior quality feed,and its BMCI value can reach 10.7.The total yield of chemical raw materials can reach more than65%.The industrial operation process has implemented two operating cycles totaling 8 years.展开更多
The removal of hydrogen sulfide from gas plays an important role in rational utilization of resources and environ- mental protection. In this paper, the process of hydrogen sulfide removal by wet oxidation method in a...The removal of hydrogen sulfide from gas plays an important role in rational utilization of resources and environ- mental protection. In this paper, the process of hydrogen sulfide removal by wet oxidation method in a rotating packed bed was investigated in a scale for treating 10 000 Nm3/h of gas. On the basis of studying the influence of the species and con- centration of alkali source, the liquid/gas volume ratio, the high gravity factor, and the hydrogen sulfide content in feed gas on the desulfurization effect, the suitable technological conditions were obtained. The hydrogen sulfide removal efficiency could reach 98.0% under these conditions. The results of continuous operation of process facilities showed that the high gravity method has many merits including higher desulfurization rate, good stability in operation, lower liquid/gas volume ratio, greater operation elasticity, and apparent energy saving effects.展开更多
Far from being equivalent to host the process, the vessels play an active role in the crystallization thanks to their differently shaped bottoms. It was clearly pointed out through a meticulous experimental research o...Far from being equivalent to host the process, the vessels play an active role in the crystallization thanks to their differently shaped bottoms. It was clearly pointed out through a meticulous experimental research on the batch crystallization of CAM (citric acid monohydrate) carried out in the years 1997-1998 by the author at the historic laboratories of"La Sapienza" University of Rome. Such pioneering M.Sc. thesis, supervised by Prof. Barbara Mazzarotta (Department of Chemical Engineering), was already summarized in an informative essay but, since the crystallization operating conditions to optimize were illustrated "collectively", it seemed necessary a further paper expounding uniquely the geometry effect. Our aim is to use all the data, collected and simulated, in order to show why the round-bottomed crystallizer performed better than the conical-bottomed one with the CAM from aqueous solutions, and why we should discard the flat-bottomed crystallizers.展开更多
A short presentation of chemical engineering evolution,as guided by its paradigms,is exposed.The first paradigm–unit operations–has emerged as a necessity of systematization due to the explosion of chemical industri...A short presentation of chemical engineering evolution,as guided by its paradigms,is exposed.The first paradigm–unit operations–has emerged as a necessity of systematization due to the explosion of chemical industrial applications at the end of 19th century.The birth in the late 1950s of the second paradigm–transport phenomena–was the consequence of the need for a deep,scienti fic knowledge of the phenomena that explain what happens inside of unit operations.In the second part of 20th century,the importance of chemical product properties and qualities has become essentially in the market fights.Accordingly,it was required with additional and even new fundamental approaches,and product engineering was recognized as the third paradigm.Nowadays chemical industry,as a huge materials and energy consumer,and with a strong ecological impact,couldn't remain outside of sustainability requirements.The basics of the fourth paradigm–sustainable chemical engineering–are now formulated.展开更多
文摘Biology is a rich source of great ideas that can inspire us to find successful ways to solve the challenging problems in engineering practices including those in the chemical industry. Bio-inspired chemical engineering(Bio Ch E)may be recognized as a significant branch of chemical engineering. It may consist of, but not limited to, the following three aspects: 1) Chemical engineering principles and unit operations in biological systems; 2) Process engineering principles for producing existing or developing new chemical products through living ‘devices';and 3) Chemical engineering processes and equipment that are designed and constructed through mimicking(does not have to reproduce one hundred percent) the biological systems including their physical–chemical and mechanical structures to deliver uniquely beneficial performances. This may also include the bio-inspired sensors for process monitoring. In this paper, the above aspects are defined and discussed which establishes the scope of BioChE.
文摘Batch processes are important in chemical industry,in which operators usually play a major role and hazards may arise by their inadvertent acts.In this paper,based on hazard and operability study and concept of qualitative simulation,an automatic method for adverse consequence identification for potential maloperation is proposed.The qualitative model for production process is expressed by a novel directed graph.Possible operation deviations from normal operating procedure are identified systematically by using a group of guidewords.The proposed algorithm is used for qualitative simulation of batch processes to identify the effects of maloperations.The method is illustrated with a simple batch process and a batch reaction process.The results show that batch processes can be simulated qualitatively and hazards can be identified for operating procedures including maloperations.After analysis for possible plant maloperations,some measures can be taken to avoid maloperations or reduce losses resulted from maloperations.
基金the financial support from the SINOPEC(No.114016)
文摘To adapt to the change in the demand of the oil refining market,two hydrocracking catalysts,RHC-1 and RHC-5,were developed to improve the quality of tail oil.The catalysts were designed based on the theory of selective ring-opening.By selecting more acidic molecular sieves,the problem of poor selectivity of conventional materials can be solved to properly match up to the hydrogenation performance of catalysts.Compared with the performance of previous catalysts,the quality of the tail oil achieved by the said catalysts is better,and the BMCI is reduced by 1—2 units.In the long cycle operation of the petroleum industry,the good quality of the tail oil has been verified and the adaptability of the process conditions is good.When the RHC-1 catalyst is used to process heavy feed under medium pressure,a BMCI value of about12 can be obtained along with a nearly 60%yield of tail oil.The total yield of chemical raw material(steaming cracking feed+catalytic reforming feed)can exceed 80%,and the hydrogen consumption has dropped by nearly 50%as compared to the conventional hydrocracking conversion rate.When processing a mixed CGO and VGO feed with the full conversion mode under a hydrogen pressure of 13.0 MPa,the RHC-5 catalyst can yield about 68.4%of heavy naphtha with a potential aromatic content of up to 50.6,while the total yield of chemical raw materials can reach more than 98%.The results of industrial application of these catalysts show that more than 30%of high quality tail oil can be obtained via processing of inferior quality feed,and its BMCI value can reach 10.7.The total yield of chemical raw materials can reach more than65%.The industrial operation process has implemented two operating cycles totaling 8 years.
基金the Shanxi Provin-cial Youth Science and Technology Research Fund (No.2008021009-2) for the financial support to this project
文摘The removal of hydrogen sulfide from gas plays an important role in rational utilization of resources and environ- mental protection. In this paper, the process of hydrogen sulfide removal by wet oxidation method in a rotating packed bed was investigated in a scale for treating 10 000 Nm3/h of gas. On the basis of studying the influence of the species and con- centration of alkali source, the liquid/gas volume ratio, the high gravity factor, and the hydrogen sulfide content in feed gas on the desulfurization effect, the suitable technological conditions were obtained. The hydrogen sulfide removal efficiency could reach 98.0% under these conditions. The results of continuous operation of process facilities showed that the high gravity method has many merits including higher desulfurization rate, good stability in operation, lower liquid/gas volume ratio, greater operation elasticity, and apparent energy saving effects.
文摘Far from being equivalent to host the process, the vessels play an active role in the crystallization thanks to their differently shaped bottoms. It was clearly pointed out through a meticulous experimental research on the batch crystallization of CAM (citric acid monohydrate) carried out in the years 1997-1998 by the author at the historic laboratories of"La Sapienza" University of Rome. Such pioneering M.Sc. thesis, supervised by Prof. Barbara Mazzarotta (Department of Chemical Engineering), was already summarized in an informative essay but, since the crystallization operating conditions to optimize were illustrated "collectively", it seemed necessary a further paper expounding uniquely the geometry effect. Our aim is to use all the data, collected and simulated, in order to show why the round-bottomed crystallizer performed better than the conical-bottomed one with the CAM from aqueous solutions, and why we should discard the flat-bottomed crystallizers.
文摘A short presentation of chemical engineering evolution,as guided by its paradigms,is exposed.The first paradigm–unit operations–has emerged as a necessity of systematization due to the explosion of chemical industrial applications at the end of 19th century.The birth in the late 1950s of the second paradigm–transport phenomena–was the consequence of the need for a deep,scienti fic knowledge of the phenomena that explain what happens inside of unit operations.In the second part of 20th century,the importance of chemical product properties and qualities has become essentially in the market fights.Accordingly,it was required with additional and even new fundamental approaches,and product engineering was recognized as the third paradigm.Nowadays chemical industry,as a huge materials and energy consumer,and with a strong ecological impact,couldn't remain outside of sustainability requirements.The basics of the fourth paradigm–sustainable chemical engineering–are now formulated.