期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于回顾蒸馏学习的无监督工业品缺陷检测方法
1
作者 成科扬 丁杨柳 +1 位作者 詹永照 严浏阳 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第6期1030-1040,共11页
在自动化工业生产环境中高效地完成产品质检是生产过程中的重要任务之一,提出一种基于回顾蒸馏学习的无监督工业品缺陷检测方法(Retro-KD).首先,针对缺陷产生的未知性问题,采用无监督的方式训练蒸馏学习模型,同时,为了充分地利用蒸馏学... 在自动化工业生产环境中高效地完成产品质检是生产过程中的重要任务之一,提出一种基于回顾蒸馏学习的无监督工业品缺陷检测方法(Retro-KD).首先,针对缺陷产生的未知性问题,采用无监督的方式训练蒸馏学习模型,同时,为了充分地利用蒸馏学习中的信息传递机制,利用中间层特征提取模块完善教师网络中的特征架构;其次,提出迭代信息融合模块,回顾地传递中间层信息,指导学生网络拟合正样本特征分布,放大缺陷样本差异性;再引入相似性度量(Structural Similarity,SSIM),增强教师与学生网络在图像空间中的相似度;最后,采用基于梯度变化的缺陷分割方法得到像素级的定位图.在MVTec-AD和Magnetic-Tile两个工业数据集上验证了该方法的有效性,其AUROC(Area under ROC)与ACC(Accuracy)指标分别提升了1.9%与1.3%. 展开更多
关键词 工业品缺陷检测 无监督学习 知识蒸馏 回顾信息传递 图结构相似性度量
下载PDF
基于多尺度残差网络优化的工业品表面缺陷检测 被引量:1
2
作者 陈昕卓 李建军 张超 《计算机测量与控制》 2022年第4期29-34,共6页
工业品表面缺陷检测是工业产品质量评估的关键环节,实现快速、准确、高效的检测对提升工业产能具有重要意义;该研究针对传统神经网络提取特征尺度单一、参数量大,网络训练效率低等问题,提出了一种基于残差网络的多尺度特征融合与RBN结... 工业品表面缺陷检测是工业产品质量评估的关键环节,实现快速、准确、高效的检测对提升工业产能具有重要意义;该研究针对传统神经网络提取特征尺度单一、参数量大,网络训练效率低等问题,提出了一种基于残差网络的多尺度特征融合与RBN结合的残差网络模型;首先该模型通过多尺度卷积特征融合模块提取不同尺度的特征信息;然后,通过引入RBN层,使特征分布更加均匀;最后,采用全局平均池化代替传统的全连接层来减少模型的参数量,实现输出通道与特征类别的直接映射;该研究提出的网络模型在公开数据集NEU-DET上进行实验,识别率达到100%,在天池人工智能大赛铝型材缺陷数据集上的识别率达到98.8%,模型性能较为优异,可以很好地完成工业品表面缺陷检测任务。 展开更多
关键词 工业品表面缺陷检测 多尺度特征 RBN 全局平均池化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部