期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于PCA-SVR模型中国工业固废产生量预测研究
被引量:
5
1
作者
刘炳春
齐鑫
《河南师范大学学报(自然科学版)》
CAS
北大核心
2020年第1期69-74,共6页
依据国家统计局及中国统计年鉴数据,选取国内生产总值(GDP)、工业增加值、财政收入、固定资产投资、原煤产量、原油产量、发电量、年末总人口、我国工业企业单位数量等9个指标作为输入指标,构建了PCA-SVR(主成分分析-支持向量回归)中国...
依据国家统计局及中国统计年鉴数据,选取国内生产总值(GDP)、工业增加值、财政收入、固定资产投资、原煤产量、原油产量、发电量、年末总人口、我国工业企业单位数量等9个指标作为输入指标,构建了PCA-SVR(主成分分析-支持向量回归)中国工业固废产生量预测模型.并与支持向量回归(Support Vector Regression,SVR)、岭回归(Ridge Regression,RDG)、决策树(Decision Tree,DT)、提升树回归(Gradient Boosting Regression,GBR)多种单一模型的预测结果进行比对.实验结果表明,PCA-SVR组合模型的平均绝对百分误差(MAPE)为0.0630,均方根误差(RMSE)为2.6718,其预测误差最小.
展开更多
关键词
工业固废产生量
PCA-SVR
预测
政策引导
下载PDF
职称材料
题名
基于PCA-SVR模型中国工业固废产生量预测研究
被引量:
5
1
作者
刘炳春
齐鑫
机构
天津理工大学管理学院
出处
《河南师范大学学报(自然科学版)》
CAS
北大核心
2020年第1期69-74,共6页
基金
天津市教委社会科学重大项目(2017JWZD16)。
文摘
依据国家统计局及中国统计年鉴数据,选取国内生产总值(GDP)、工业增加值、财政收入、固定资产投资、原煤产量、原油产量、发电量、年末总人口、我国工业企业单位数量等9个指标作为输入指标,构建了PCA-SVR(主成分分析-支持向量回归)中国工业固废产生量预测模型.并与支持向量回归(Support Vector Regression,SVR)、岭回归(Ridge Regression,RDG)、决策树(Decision Tree,DT)、提升树回归(Gradient Boosting Regression,GBR)多种单一模型的预测结果进行比对.实验结果表明,PCA-SVR组合模型的平均绝对百分误差(MAPE)为0.0630,均方根误差(RMSE)为2.6718,其预测误差最小.
关键词
工业固废产生量
PCA-SVR
预测
政策引导
Keywords
industrial solid waste generation
PCA-SVR
forecast
policy guidance
分类号
X825 [环境科学与工程—环境工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于PCA-SVR模型中国工业固废产生量预测研究
刘炳春
齐鑫
《河南师范大学学报(自然科学版)》
CAS
北大核心
2020
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部