With the development of industry in China, the emission issues of indus- trial wastewater has got more and more attention. Excessive levels of pollutants in wastewater are urgent problem to be solved. Together with th...With the development of industry in China, the emission issues of indus- trial wastewater has got more and more attention. Excessive levels of pollutants in wastewater are urgent problem to be solved. Together with the emissions of do- mestic wastewater, the discharge amount of pollutants has exceeded standard in many cities, which not only pollutes the water resources, but also greatly threatens the environment, and does great harm to people's health. The principal component analysis was conducted based on the principal components extracted from the data of major pollutants emission conditions in the wastewater of major cities from the China Statistical Yearbook 2014.展开更多
Aerobically activated sludge processing was carried out to treat terylene artificial silk printing and dyeing wastewater (TPD wastewater) in a lab-scale experiment, focusing on the kinetics of the COD removal. The kin...Aerobically activated sludge processing was carried out to treat terylene artificial silk printing and dyeing wastewater (TPD wastewater) in a lab-scale experiment, focusing on the kinetics of the COD removal. The kinetics pa-rameters determined from experiment were applied to evaluate the biological treatability of wastewater. Experiments showed that COD removal could be divided into two stages, in which the ratio BOD/COD (B/C) was the key factor for stage division. At the rapid-removal stage with B/C>0.1, COD removal could be described by a zero order reaction. At the mod-erate-removal stage with B/C<0.1, COD removal could be described by a first order reaction. Then Monod equation was introduced to indicate COD removal. The reaction rate constant (K) and half saturation constant (KS) were 0.0208-0.0642 L/(gMLSS)h and 0.44-0.59 (gCOD)/L respectively at 20 C-35 C. Activation energy (Ea) was 6.05104 J/mol. By comparison of kinetic parameters, the biological treatability of TPD wastewater was superior to that of traditional textile wastewater. But COD removal from TPD-wastewater was much more difficult than that from domestic and industrial wastewater, such as papermaking, beer, phenol wastewater, etc. The expected effluent quality strongly related to un-biodegradable COD and kinetics rather than total COD. The results provide useful basis for further scaling up and efficient operation of TPD wastewater treatment.展开更多
The deteriorating water quality in the Taihu Lake Basin has attracted widespread attention for many years, and is correlated with a sharp increase in the quantity of pollutant discharge such as agricultural fertilizer...The deteriorating water quality in the Taihu Lake Basin has attracted widespread attention for many years, and is correlated with a sharp increase in the quantity of pollutant discharge such as agricultural fertilizers and industrial wastewater. In this study, several factors were selected for evaluating and regionalizing the water environmental capacity by ArcG1S spatial analysis, including geomor- phologic characteristics, water quality goals, water body accessibility, water-dilution channels, and current water quality. Then, the spa- tial optimization of agriculture and industry was adjusted through overlay analysis, based on the balance between industrial space and water environmental capacity. The results show that the water environmental capacity gradually decreases from the west to the east, in contrast, the pollution caused by industrial and agricultural clustering is distributes along Taihu Lake, Gehu Lake and urban districts. The analysis of the agricultural space focuses on optimizing key protected areas of the Taihu Lake Basin, and the shores of Gehu Lake, optimally adjusting the second protected areas of the Taihu Lake Basin, and generally adjusting the urban areas of Changzhou and Wuxi cities. The analysis of industrial space focuses on optimizing the downtowns of Changzhou and Wuxi cities, optimally adjusting key protected areas and second protected areas of the Taihu Lake Basin, and generally adjusting the south and southwest of Gehu Lake. Lastly, some schemes of industrial and agricultural layouts and policies for the direction of industrial and agricultural development were proposed, reflecting a correlation between industry and agriculture and the water environment.展开更多
This paper contributes to the Industrial Ecology Concept by using a common urban solid waste, i.e., coffee residues, to clean industrial wastewaters polluted by basic dyes, e.g., Methylene Blue. For the data from the ...This paper contributes to the Industrial Ecology Concept by using a common urban solid waste, i.e., coffee residues, to clean industrial wastewaters polluted by basic dyes, e.g., Methylene Blue. For the data from the continuous fixed-bed column system, two common models, namely (a) Bohart and Adams and (b) Clark were implemented. The Bohart and Adams capacity was up to N = 46,166 mg.L-1 or q0 = 104.5 mg.g-1 for bed-depth 15 cm, initial dye concentration 800 mg.g-1 and flow rate 20 mL.min-1. The results revealed that the Methylene Blue is fairly adsorbed on coffee residues. Consequently, this process can be applied as a low cost technique for cleaning basic dyes from the aquatic environment.展开更多
With the development of China' s industry, the domestic industrial parks greatly emerge and thus give rise to the diversity of pollutants in chemical wastewater. In this paper, the main sources of China' s chemical ...With the development of China' s industry, the domestic industrial parks greatly emerge and thus give rise to the diversity of pollutants in chemical wastewater. In this paper, the main sources of China' s chemical industry wastewater, main pollutants types and the wastewater characteristics of the chemical industry' s different branches are introduced, the related technologies and methods mainly applied to chemical industry wastewater treatment at home and abroad are analyzed and the application of different chemical wastewater treatment process is explained, and also all sorts of treatment technologies, methods, and processes are reviewed, and finally the study achievements and problems of all technol^ogies are concluded.展开更多
To improve the efficiency of petrochemical wastewater purification, the relationship between bacterial community structure and pollutants loading/degrading rates in A/O process for petrochemical wastewater treatment w...To improve the efficiency of petrochemical wastewater purification, the relationship between bacterial community structure and pollutants loading/degrading rates in A/O process for petrochemical wastewater treatment was investigated by denaturing gradient gel eleetrophoresis (DGGE) of the 16S rRNA gene fragments amplified by polymerase chain reaction (PCR). Results show that while the influent COD and NH4^+ -N concentrations are 425.92 -560 mg/L and 64 - 100 mg/L respectively, the corresponding average concentrations of the effluent are 160 mg/L and 55 mg/L, which are 1. 6 and 3.6 times more than the national standards respectively. It demonstrates that the performance of pollutants removal process is inefficient. The analysis of PCR-DGGE profile indicates that the bacterial community structure of the activated sludge in A/O system is species-rich but unstable, and the highest and the lowest similarity coefficients are 36% and 6. 25% respectively, which shows that remarkable community structure evolution exists in the system. The variation of bacterial community structure and pollutants loading influences the removal efficiency of pollutants obviously, and relatively stable com- munity structure leads to the stable operational performance of biological wastewater treatment system.展开更多
The aim of the present work is to remove heavy metals (copper, manganese, and zinc) from industrial wastewater of Baiji refinery using GAC (granular activated carbon). The most important factors affecting adsorpti...The aim of the present work is to remove heavy metals (copper, manganese, and zinc) from industrial wastewater of Baiji refinery using GAC (granular activated carbon). The most important factors affecting adsorption process have been studied, which are granular activated carbon thickness, H, inlet pollutant concentration, Cv, and liquid hourly space velocity, LHSV. All experiments were performed under constant temperature at 25℃ and pH = 7. The experimental apparatus was designed and constructed to enable controlling of the operating conditions. Employing five levels for each of H and LHSV and three levels for Co required 75 runs for each metal. Box-Wilson method was used to reduce the number of experiments to 15 for each metal. The results indicated that copper, manganese, and zinc can be completely removed from wastewater using activated carbon. However, breakthrough time for zinc is low. It is also shown that breakthrough time (TB) and exhaustion time (TE) are inversely proportional with pollutant concentration and LHSV (liquid hour space velocity) while it is directly proportional with the thickness of activated carbon column.展开更多
Mine tailings, waste rock piles, acid mine drainage, industrial wastewater, and sewage sludge have contaminated a vast area of cultivable and fallow lands, with a consequence of deterioration of soil and water quality...Mine tailings, waste rock piles, acid mine drainage, industrial wastewater, and sewage sludge have contaminated a vast area of cultivable and fallow lands, with a consequence of deterioration of soil and water quality and watercourses due to the erosion of contaminated soils for absence of vegetative cover. High concentrations of toxic elements, organic contaminants, acidic soils, and harsh climatic conditions have made it difficult to re-establish vegetation and produce crops there. Recently, a significant body of work has focussed on the suitability and potentiality of biochar as a soil remediation tool that increases seed emergence, soil and crop productivity, above ground biomass, and vegetation cover on mine tailings, waste rock piles, and industrial and sewage waste- contaminated soils by increasing soil nutrients and water-holding capacity, amelioration of soil acidity, and stimulation of microbial diversity and functions. This review addresses: i) the functional properties of biochar, and microbial cycling of nutrients in soil; ii) bioremediation, especially phytoremediation of mine railings, industrial waste, sewage sludge, and contaminated soil using biochar; iii) impact of biochar on reduction of acid production, acid mine drainage treatment, and geochemical dynamics in mine railings; and iv) treatment of metal and organic contaminants in soils using biochar, and restoration of degraded land.展开更多
Over the past ten years,microalgae have been investigated as promising sources of renewable energy to replace the diminishing supply of fossil fuels and mitigate the environmental pollution caused by use of fossil fue...Over the past ten years,microalgae have been investigated as promising sources of renewable energy to replace the diminishing supply of fossil fuels and mitigate the environmental pollution caused by use of fossil fuels.In addition to providing oil-based biofuels,the use of microalgae can potentially reduce environmental pollution because algae can use industrial byproducts(CO_2,NOx,wastewater,and others)as nutrition sources.However,our previous study showed that the unacceptably high cost of biofuels production,especially culturing microalgae,remains the biggest obstacle hindering the large-scale implementation of microalgae biofuels.Therefore,future efforts will likely emphasize biotechnological approaches to improve the economic feasibility of algal biofuel production.This review summarizes the progress made over the last decade in environmental applications of microalgae,combined with data on CO_2 capture,NOx biotransformation,wastewater treatment,and synergistic applications,and discusses future prospects.展开更多
文摘With the development of industry in China, the emission issues of indus- trial wastewater has got more and more attention. Excessive levels of pollutants in wastewater are urgent problem to be solved. Together with the emissions of do- mestic wastewater, the discharge amount of pollutants has exceeded standard in many cities, which not only pollutes the water resources, but also greatly threatens the environment, and does great harm to people's health. The principal component analysis was conducted based on the principal components extracted from the data of major pollutants emission conditions in the wastewater of major cities from the China Statistical Yearbook 2014.
文摘Aerobically activated sludge processing was carried out to treat terylene artificial silk printing and dyeing wastewater (TPD wastewater) in a lab-scale experiment, focusing on the kinetics of the COD removal. The kinetics pa-rameters determined from experiment were applied to evaluate the biological treatability of wastewater. Experiments showed that COD removal could be divided into two stages, in which the ratio BOD/COD (B/C) was the key factor for stage division. At the rapid-removal stage with B/C>0.1, COD removal could be described by a zero order reaction. At the mod-erate-removal stage with B/C<0.1, COD removal could be described by a first order reaction. Then Monod equation was introduced to indicate COD removal. The reaction rate constant (K) and half saturation constant (KS) were 0.0208-0.0642 L/(gMLSS)h and 0.44-0.59 (gCOD)/L respectively at 20 C-35 C. Activation energy (Ea) was 6.05104 J/mol. By comparison of kinetic parameters, the biological treatability of TPD wastewater was superior to that of traditional textile wastewater. But COD removal from TPD-wastewater was much more difficult than that from domestic and industrial wastewater, such as papermaking, beer, phenol wastewater, etc. The expected effluent quality strongly related to un-biodegradable COD and kinetics rather than total COD. The results provide useful basis for further scaling up and efficient operation of TPD wastewater treatment.
基金Under the auspices of National Natural Science Foundation of China (No. 41130750,70703033)'135' Strategic Development Planning Project of Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences (No. 2012135006)
文摘The deteriorating water quality in the Taihu Lake Basin has attracted widespread attention for many years, and is correlated with a sharp increase in the quantity of pollutant discharge such as agricultural fertilizers and industrial wastewater. In this study, several factors were selected for evaluating and regionalizing the water environmental capacity by ArcG1S spatial analysis, including geomor- phologic characteristics, water quality goals, water body accessibility, water-dilution channels, and current water quality. Then, the spa- tial optimization of agriculture and industry was adjusted through overlay analysis, based on the balance between industrial space and water environmental capacity. The results show that the water environmental capacity gradually decreases from the west to the east, in contrast, the pollution caused by industrial and agricultural clustering is distributes along Taihu Lake, Gehu Lake and urban districts. The analysis of the agricultural space focuses on optimizing key protected areas of the Taihu Lake Basin, and the shores of Gehu Lake, optimally adjusting the second protected areas of the Taihu Lake Basin, and generally adjusting the urban areas of Changzhou and Wuxi cities. The analysis of industrial space focuses on optimizing the downtowns of Changzhou and Wuxi cities, optimally adjusting key protected areas and second protected areas of the Taihu Lake Basin, and generally adjusting the south and southwest of Gehu Lake. Lastly, some schemes of industrial and agricultural layouts and policies for the direction of industrial and agricultural development were proposed, reflecting a correlation between industry and agriculture and the water environment.
文摘This paper contributes to the Industrial Ecology Concept by using a common urban solid waste, i.e., coffee residues, to clean industrial wastewaters polluted by basic dyes, e.g., Methylene Blue. For the data from the continuous fixed-bed column system, two common models, namely (a) Bohart and Adams and (b) Clark were implemented. The Bohart and Adams capacity was up to N = 46,166 mg.L-1 or q0 = 104.5 mg.g-1 for bed-depth 15 cm, initial dye concentration 800 mg.g-1 and flow rate 20 mL.min-1. The results revealed that the Methylene Blue is fairly adsorbed on coffee residues. Consequently, this process can be applied as a low cost technique for cleaning basic dyes from the aquatic environment.
文摘With the development of China' s industry, the domestic industrial parks greatly emerge and thus give rise to the diversity of pollutants in chemical wastewater. In this paper, the main sources of China' s chemical industry wastewater, main pollutants types and the wastewater characteristics of the chemical industry' s different branches are introduced, the related technologies and methods mainly applied to chemical industry wastewater treatment at home and abroad are analyzed and the application of different chemical wastewater treatment process is explained, and also all sorts of treatment technologies, methods, and processes are reviewed, and finally the study achievements and problems of all technol^ogies are concluded.
基金Sponsored by the National Basic Research and Development (973) Program of China(Grant No.2004CB185050)
文摘To improve the efficiency of petrochemical wastewater purification, the relationship between bacterial community structure and pollutants loading/degrading rates in A/O process for petrochemical wastewater treatment was investigated by denaturing gradient gel eleetrophoresis (DGGE) of the 16S rRNA gene fragments amplified by polymerase chain reaction (PCR). Results show that while the influent COD and NH4^+ -N concentrations are 425.92 -560 mg/L and 64 - 100 mg/L respectively, the corresponding average concentrations of the effluent are 160 mg/L and 55 mg/L, which are 1. 6 and 3.6 times more than the national standards respectively. It demonstrates that the performance of pollutants removal process is inefficient. The analysis of PCR-DGGE profile indicates that the bacterial community structure of the activated sludge in A/O system is species-rich but unstable, and the highest and the lowest similarity coefficients are 36% and 6. 25% respectively, which shows that remarkable community structure evolution exists in the system. The variation of bacterial community structure and pollutants loading influences the removal efficiency of pollutants obviously, and relatively stable com- munity structure leads to the stable operational performance of biological wastewater treatment system.
文摘The aim of the present work is to remove heavy metals (copper, manganese, and zinc) from industrial wastewater of Baiji refinery using GAC (granular activated carbon). The most important factors affecting adsorption process have been studied, which are granular activated carbon thickness, H, inlet pollutant concentration, Cv, and liquid hourly space velocity, LHSV. All experiments were performed under constant temperature at 25℃ and pH = 7. The experimental apparatus was designed and constructed to enable controlling of the operating conditions. Employing five levels for each of H and LHSV and three levels for Co required 75 runs for each metal. Box-Wilson method was used to reduce the number of experiments to 15 for each metal. The results indicated that copper, manganese, and zinc can be completely removed from wastewater using activated carbon. However, breakthrough time for zinc is low. It is also shown that breakthrough time (TB) and exhaustion time (TE) are inversely proportional with pollutant concentration and LHSV (liquid hour space velocity) while it is directly proportional with the thickness of activated carbon column.
文摘Mine tailings, waste rock piles, acid mine drainage, industrial wastewater, and sewage sludge have contaminated a vast area of cultivable and fallow lands, with a consequence of deterioration of soil and water quality and watercourses due to the erosion of contaminated soils for absence of vegetative cover. High concentrations of toxic elements, organic contaminants, acidic soils, and harsh climatic conditions have made it difficult to re-establish vegetation and produce crops there. Recently, a significant body of work has focussed on the suitability and potentiality of biochar as a soil remediation tool that increases seed emergence, soil and crop productivity, above ground biomass, and vegetation cover on mine tailings, waste rock piles, and industrial and sewage waste- contaminated soils by increasing soil nutrients and water-holding capacity, amelioration of soil acidity, and stimulation of microbial diversity and functions. This review addresses: i) the functional properties of biochar, and microbial cycling of nutrients in soil; ii) bioremediation, especially phytoremediation of mine railings, industrial waste, sewage sludge, and contaminated soil using biochar; iii) impact of biochar on reduction of acid production, acid mine drainage treatment, and geochemical dynamics in mine railings; and iv) treatment of metal and organic contaminants in soils using biochar, and restoration of degraded land.
基金supported jointly by the National Natural Science Foundation of China(Grant Nos.31770128&31700107)the Hubei Provincial Natural Science Foundation(Grant No.2017CFA021)
文摘Over the past ten years,microalgae have been investigated as promising sources of renewable energy to replace the diminishing supply of fossil fuels and mitigate the environmental pollution caused by use of fossil fuels.In addition to providing oil-based biofuels,the use of microalgae can potentially reduce environmental pollution because algae can use industrial byproducts(CO_2,NOx,wastewater,and others)as nutrition sources.However,our previous study showed that the unacceptably high cost of biofuels production,especially culturing microalgae,remains the biggest obstacle hindering the large-scale implementation of microalgae biofuels.Therefore,future efforts will likely emphasize biotechnological approaches to improve the economic feasibility of algal biofuel production.This review summarizes the progress made over the last decade in environmental applications of microalgae,combined with data on CO_2 capture,NOx biotransformation,wastewater treatment,and synergistic applications,and discusses future prospects.