The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred s...The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred simultaneously compared with pure water.A three-dimensional finite element numerical model of multi-feed microwave heating industrial liquids continuously flowing in a meter-scale circular tube is presented.The temperature field inside the applicator tube in the cavity is solved by COMSOL Multiphysics and professional programming to describe the momentum,energy and Maxwell's equations.The evaluations of the electromagnetic field,the temperature distribution and the velocity field are simulated for the fluids dynamically heated by singleand multi-feed microwave system,respectively.Both the pilot experimental investigations and numerical results of microwave with single-feed heating for fluids with different effective permittivity and flow rates show that the presented numerical modeling makes it possible to analyze dynamic process of multi-feed microwave heating the industrial liquid.The study aids in enhancing the understanding and optimizing of dynamic process in the use of multi-feed microwave heating industrial continuous flow for a variety of material properties and technical parameters.展开更多
Olive oil is an important food industry product in Mediterranean countries. Large quantities of OWR (olive waste residue) are generated during a two- or three-phase separation process. This represents a major pollut...Olive oil is an important food industry product in Mediterranean countries. Large quantities of OWR (olive waste residue) are generated during a two- or three-phase separation process. This represents a major pollution problem for the industry and oil farms. The OWR is a source of substances of high value and can be used as a low-cost renewable energy. This work studied the behaviour of OWRs during the thermal decomposition process. The experiments of the slow pyrolysis process of three different waste olive products as olive pomace, olive tree pruning and olive kernels were performed under a nitrogen atmosphere at different heating rates, using a thermogravimetric balance. The samples were heated to a maximum temperature of 1,023 K, with four different heating rates of 2, 5, 10, 15 K/min. A comparison of different isoconversional (Flynn-Wall-Ozawa), not-isoconversional (Kissinger) model-free and model-fitting (Freeman-Carroll) methods to calculate the activation energy and pre-exponential factor is presented. In the Kissinger method the kinetic parameters were invariant for the whole pyrolysis process. While, in the case of Freeman-Carroll, it differs with change of the heating rate. The Flynn-Wall-Ozawa technique revealed the "not one-step" mechanism of reaction that occurs during the slow pyrolysis process. The kinetic data obtained in nitrogen atmosphere may provide more useful information for engineers for a better and complete description of the pyrolysis process and can be helpful to predict the kinetic model.展开更多
The industrial biomass combustor of Halla food factory in Thailand was designed for drying tuna fish product. The purpose of this paper needed to present the design of a factory combustor for producing heat in the dry...The industrial biomass combustor of Halla food factory in Thailand was designed for drying tuna fish product. The purpose of this paper needed to present the design of a factory combustor for producing heat in the drying process by thermal energy from biomass fuel combustion to reduce the investment cost. A drying chamber was made from four concrete walls in the rectangular volume of 4.7 × 4.7 × 2.5 m3 for drying tuna fishes that sliced to small pieces of around 2,680 kg fresh tuna. The hot air tube in the combustor was used for driving hot air to dry fishes in the drying chamber. Heat from acacia wood burning in the combustor with the consumption rate of 50.1 kg/h was transferred by the hot air. The design result was calculated for thermal energy and the efficiency of around 200 kW, and 32%, respectively in the case of 0.62 m3/s hot air flow rate that circulation between the combustor and the drying chamber. The experimental result shows that the moister content of 78.9%wb was decreased to around 13.8%wb in 5 days without petroleum fuel. The drying temperature was controlled at 70℃ continuously for reducing hard containing, and the closed loop tube design for the less of BaP (benzo (a) pyrene) from combustion smoking of the drying industrial process.展开更多
The most used method for preparation of zeolites is hydrothermal synthesis from silicate or aluminosilicate gels at temperatures in the range of 60-200 ℃. Excess water used in the industrial process results in severa...The most used method for preparation of zeolites is hydrothermal synthesis from silicate or aluminosilicate gels at temperatures in the range of 60-200 ℃. Excess water used in the industrial process results in several issues, including high autogeneous pressure, low efficiency, pollution, etc. To solve these problems, several strategies have been developed. This review describes the solvent-free synthesis of zeolites. The combination of solvent-free synthesis and organotemplate-free synthesis can open the pathway to a highly sustainable zeolite synthesis protocol in industry.展开更多
An exergy analysis was performed considering the combustion of methane and agro-industrial residues produced in Portugal (forest residues and vines pruning). Regarding that the irreversibilities of a thermodynamic pro...An exergy analysis was performed considering the combustion of methane and agro-industrial residues produced in Portugal (forest residues and vines pruning). Regarding that the irreversibilities of a thermodynamic process are path dependent, the combustion process was considering as resulting from different hypothetical paths each one characterized by four main sub-processes: reactant mixing, fuel oxidation, internal thermal energy exchange (heat transfer), and product mixing. The exergetic efficiency was computed using a zero dimensional model developed by using a Visual Basic home code. It was concluded that the exergy losses were mainly due to the internal thermal energy exchange sub-process. The exergy losses from this sub-process are higher when the reactants are preheated up to the ignition temperature without previous fuel oxidation. On the other hand, the global exergy destruction can be minored increasing the pressure, the reactants temperature and the oxygen content on the oxidant stream. This methodology allows the identification of the phenomena and processes that have larger exergy losses, the understanding of why these losses occur and how the exergy changes with the parameters associated to each system which is crucial to implement the syngas combustion from biomass products as a competitive technology.展开更多
基金Project(KKSY201503006)supported by Scientific Research Foundation of Kunming University of Science and Technology,ChinaProject(2014FD009)supported by the Applied Basic Research Foundation(Youth Program)of ChinaProject(51090385)supported by the National Natural Science Foundation of China
文摘The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred simultaneously compared with pure water.A three-dimensional finite element numerical model of multi-feed microwave heating industrial liquids continuously flowing in a meter-scale circular tube is presented.The temperature field inside the applicator tube in the cavity is solved by COMSOL Multiphysics and professional programming to describe the momentum,energy and Maxwell's equations.The evaluations of the electromagnetic field,the temperature distribution and the velocity field are simulated for the fluids dynamically heated by singleand multi-feed microwave system,respectively.Both the pilot experimental investigations and numerical results of microwave with single-feed heating for fluids with different effective permittivity and flow rates show that the presented numerical modeling makes it possible to analyze dynamic process of multi-feed microwave heating the industrial liquid.The study aids in enhancing the understanding and optimizing of dynamic process in the use of multi-feed microwave heating industrial continuous flow for a variety of material properties and technical parameters.
文摘Olive oil is an important food industry product in Mediterranean countries. Large quantities of OWR (olive waste residue) are generated during a two- or three-phase separation process. This represents a major pollution problem for the industry and oil farms. The OWR is a source of substances of high value and can be used as a low-cost renewable energy. This work studied the behaviour of OWRs during the thermal decomposition process. The experiments of the slow pyrolysis process of three different waste olive products as olive pomace, olive tree pruning and olive kernels were performed under a nitrogen atmosphere at different heating rates, using a thermogravimetric balance. The samples were heated to a maximum temperature of 1,023 K, with four different heating rates of 2, 5, 10, 15 K/min. A comparison of different isoconversional (Flynn-Wall-Ozawa), not-isoconversional (Kissinger) model-free and model-fitting (Freeman-Carroll) methods to calculate the activation energy and pre-exponential factor is presented. In the Kissinger method the kinetic parameters were invariant for the whole pyrolysis process. While, in the case of Freeman-Carroll, it differs with change of the heating rate. The Flynn-Wall-Ozawa technique revealed the "not one-step" mechanism of reaction that occurs during the slow pyrolysis process. The kinetic data obtained in nitrogen atmosphere may provide more useful information for engineers for a better and complete description of the pyrolysis process and can be helpful to predict the kinetic model.
文摘The industrial biomass combustor of Halla food factory in Thailand was designed for drying tuna fish product. The purpose of this paper needed to present the design of a factory combustor for producing heat in the drying process by thermal energy from biomass fuel combustion to reduce the investment cost. A drying chamber was made from four concrete walls in the rectangular volume of 4.7 × 4.7 × 2.5 m3 for drying tuna fishes that sliced to small pieces of around 2,680 kg fresh tuna. The hot air tube in the combustor was used for driving hot air to dry fishes in the drying chamber. Heat from acacia wood burning in the combustor with the consumption rate of 50.1 kg/h was transferred by the hot air. The design result was calculated for thermal energy and the efficiency of around 200 kW, and 32%, respectively in the case of 0.62 m3/s hot air flow rate that circulation between the combustor and the drying chamber. The experimental result shows that the moister content of 78.9%wb was decreased to around 13.8%wb in 5 days without petroleum fuel. The drying temperature was controlled at 70℃ continuously for reducing hard containing, and the closed loop tube design for the less of BaP (benzo (a) pyrene) from combustion smoking of the drying industrial process.
基金supported by the National Natural Science Foundation of China(21273197,21333009,21203165)Fundamental Research Funds for the Central Universities(2013XZZX001)+1 种基金the National High Technology Research and Development Program of China(2013AA065301)the Science and Technology Innovative Team of Zhejiang Province(2012R10014-02)
文摘The most used method for preparation of zeolites is hydrothermal synthesis from silicate or aluminosilicate gels at temperatures in the range of 60-200 ℃. Excess water used in the industrial process results in several issues, including high autogeneous pressure, low efficiency, pollution, etc. To solve these problems, several strategies have been developed. This review describes the solvent-free synthesis of zeolites. The combination of solvent-free synthesis and organotemplate-free synthesis can open the pathway to a highly sustainable zeolite synthesis protocol in industry.
基金the Portuguese Foundation for Science and Technology (FCT) for the given support to the grant SFRH/BPD/71686the project PTDC/AAC-AMB/103119/2008
文摘An exergy analysis was performed considering the combustion of methane and agro-industrial residues produced in Portugal (forest residues and vines pruning). Regarding that the irreversibilities of a thermodynamic process are path dependent, the combustion process was considering as resulting from different hypothetical paths each one characterized by four main sub-processes: reactant mixing, fuel oxidation, internal thermal energy exchange (heat transfer), and product mixing. The exergetic efficiency was computed using a zero dimensional model developed by using a Visual Basic home code. It was concluded that the exergy losses were mainly due to the internal thermal energy exchange sub-process. The exergy losses from this sub-process are higher when the reactants are preheated up to the ignition temperature without previous fuel oxidation. On the other hand, the global exergy destruction can be minored increasing the pressure, the reactants temperature and the oxygen content on the oxidant stream. This methodology allows the identification of the phenomena and processes that have larger exergy losses, the understanding of why these losses occur and how the exergy changes with the parameters associated to each system which is crucial to implement the syngas combustion from biomass products as a competitive technology.