The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is...The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance.展开更多
With ever-increasing market competition and advances in technology, more and more countries are prioritizing advanced manufacturing technology as their top priority for economic growth. Germany announced the Industry ...With ever-increasing market competition and advances in technology, more and more countries are prioritizing advanced manufacturing technology as their top priority for economic growth. Germany announced the Industry 4.0 strategy in 2013. The US government launched the Advanced Manufacturing Partnership (AMP) in 2011 and the National Network for Manufacturing Innovation (NNMI) in 2014. Most recently, the Manufacturing USA initiative was officially rolled out to further "leverage existing resources... to nurture manufacturing innovation and accelerate commercialization" by fostering close collaboration between industry, academia, and government partners. In 2015, the Chinese government officially published a 10- year plan and roadmap toward manufacturing: Made in China 2025. In all these national initiatives, the core technology development and implementation is in the area of advanced manufacturing systems. A new manufacturing paradigm is emerging, which can be characterized by two unique features: integrated manufacturing and intelligent manufacturing. This trend is in line with the progress of industrial revolutions, in which higher efficiency in production systems is being continuously pursued. To this end, 10 major technologies can be identified for the new manufacturing paradigm. This paper describes the rationales and needs for integrated and intelligent manufacturing (i2M) systems. Related technologies from different fields are also described. In particular, key technological enablers, such as the Intemet of Things and Services (IoTS), cyber-physical systems (CPSs), and cloud computing are discussed. Challenges are addressed with applica- tions that are based on commercially available platforms such as General Electric (GE)'s Predix and PTC's ThingWorx.展开更多
A hybrid approach using MLD (mixed logical dynamical) framework to handle infeasibility and constraint prioritization issues in MPC (model predictive control) based on input-output model is introduced. By expressing c...A hybrid approach using MLD (mixed logical dynamical) framework to handle infeasibility and constraint prioritization issues in MPC (model predictive control) based on input-output model is introduced. By expressing constraint priorities as propositional logics and by transforming the propositional logics into inequalities,the infeasibility and constraint prioritization issues are solved in the MPC. Constraints with higher priorities are met first, and then these with lower priorities are satisfied as much as possible. This new approach is illustrated in the control of a heavy oil fractionator-Shell column. The overall control performance has been significantly improved through the infeasibility and control priorities handling.展开更多
This paper introduces the mathematical model of ammonia and urea reactors and suggested three methods for designing a special purpose controller. The first proposed method is Adaptive model predictive controller, the ...This paper introduces the mathematical model of ammonia and urea reactors and suggested three methods for designing a special purpose controller. The first proposed method is Adaptive model predictive controller, the second is Adaptive Neural Network Model Predictive Control, and the third is Adaptive neuro-fuzzy sliding mode controller. These methods are applied to a multivariable nonlinear system as an ammonia–urea reactor system. The main target of these controllers is to achieve stabilization of the outlet concentration of ammonia and urea, a stable reaction rate, an increase in the conversion of carbon monoxide(CO) into carbon dioxide(CO_2) to reduce the pollution effect, and an increase in the ammonia and urea productions, keeping the NH_3/CO_2 ratio equal to 3 to reduce the unreacted CO_2 and NH_3, and the two reactors' temperature in the suitable operating ranges due to the change in reactor parameters or external disturbance. Simulation results of the three controllers are compared. Comparative analysis proves the effectiveness of the suggested Adaptive neurofuzzy sliding mode controller than the two other controllers according to external disturbance and the change of parameters. Moreover, the suggested methods when compared with other controllers in the literature show great success in overcoming the external disturbance and the change of parameters.展开更多
文摘The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance.
文摘With ever-increasing market competition and advances in technology, more and more countries are prioritizing advanced manufacturing technology as their top priority for economic growth. Germany announced the Industry 4.0 strategy in 2013. The US government launched the Advanced Manufacturing Partnership (AMP) in 2011 and the National Network for Manufacturing Innovation (NNMI) in 2014. Most recently, the Manufacturing USA initiative was officially rolled out to further "leverage existing resources... to nurture manufacturing innovation and accelerate commercialization" by fostering close collaboration between industry, academia, and government partners. In 2015, the Chinese government officially published a 10- year plan and roadmap toward manufacturing: Made in China 2025. In all these national initiatives, the core technology development and implementation is in the area of advanced manufacturing systems. A new manufacturing paradigm is emerging, which can be characterized by two unique features: integrated manufacturing and intelligent manufacturing. This trend is in line with the progress of industrial revolutions, in which higher efficiency in production systems is being continuously pursued. To this end, 10 major technologies can be identified for the new manufacturing paradigm. This paper describes the rationales and needs for integrated and intelligent manufacturing (i2M) systems. Related technologies from different fields are also described. In particular, key technological enablers, such as the Intemet of Things and Services (IoTS), cyber-physical systems (CPSs), and cloud computing are discussed. Challenges are addressed with applica- tions that are based on commercially available platforms such as General Electric (GE)'s Predix and PTC's ThingWorx.
基金Supported by the 973 Program (No. 2002CB312200)National High Tech. Project of China (863/CIMS 2004AA412050).
文摘A hybrid approach using MLD (mixed logical dynamical) framework to handle infeasibility and constraint prioritization issues in MPC (model predictive control) based on input-output model is introduced. By expressing constraint priorities as propositional logics and by transforming the propositional logics into inequalities,the infeasibility and constraint prioritization issues are solved in the MPC. Constraints with higher priorities are met first, and then these with lower priorities are satisfied as much as possible. This new approach is illustrated in the control of a heavy oil fractionator-Shell column. The overall control performance has been significantly improved through the infeasibility and control priorities handling.
文摘This paper introduces the mathematical model of ammonia and urea reactors and suggested three methods for designing a special purpose controller. The first proposed method is Adaptive model predictive controller, the second is Adaptive Neural Network Model Predictive Control, and the third is Adaptive neuro-fuzzy sliding mode controller. These methods are applied to a multivariable nonlinear system as an ammonia–urea reactor system. The main target of these controllers is to achieve stabilization of the outlet concentration of ammonia and urea, a stable reaction rate, an increase in the conversion of carbon monoxide(CO) into carbon dioxide(CO_2) to reduce the pollution effect, and an increase in the ammonia and urea productions, keeping the NH_3/CO_2 ratio equal to 3 to reduce the unreacted CO_2 and NH_3, and the two reactors' temperature in the suitable operating ranges due to the change in reactor parameters or external disturbance. Simulation results of the three controllers are compared. Comparative analysis proves the effectiveness of the suggested Adaptive neurofuzzy sliding mode controller than the two other controllers according to external disturbance and the change of parameters. Moreover, the suggested methods when compared with other controllers in the literature show great success in overcoming the external disturbance and the change of parameters.