[Objective] The aim was to research property of maca and three plants' powders and process parameters of compound maca direct compression. [Method] Based on analysis data from SAS, bulk density, tap density, angle of...[Objective] The aim was to research property of maca and three plants' powders and process parameters of compound maca direct compression. [Method] Based on analysis data from SAS, bulk density, tap density, angle of repose and swelling of powders were studied as per single factor method and orthogonal exper- imental design. [Result] The test indicated that fillibilities of plant A and B, and maca powders are better and flowability plays an important role in fractional close of compound maca powder; plant A and B powders have a significant effect on bulk density of maca (P=0.0125), an extremely significant effect on swelling volume ratio (P=0.008 9) and little effect on tap density (g/ml); the optimal process condition of compound maca powder is as follows: A at 0.15 share; B at 0.10 share; C at 0.05 share; the optimal swelling volume ratio is at 2.459. [Conclusion] The technology is reasonable in formulation and satisfactory in fillibility, swelling ability, flowability, and it could serve as theoretical basis for the industrial production of maca tablets.展开更多
For the purpose of analyzing the torsional vibration caused by the gravitational unbalance torque arisen in a spindle system when it is machining heavy work piece,a 10-DOF lumped parameter model was made for the machi...For the purpose of analyzing the torsional vibration caused by the gravitational unbalance torque arisen in a spindle system when it is machining heavy work piece,a 10-DOF lumped parameter model was made for the machine tool spindle system with geared transmission.By using the elementary method and Runge-Kutta method in Matlab,the eigenvalue problem was solved and the pure torsional vibration responses were obtained and examined.The results show that the spindle system cannot operate in the desired constant rotating speed as far as the gravitational unbalance torque is engaged,so it may cause bad effect on machining accuracy.And the torsional vibration increases infinitely near the resonant frequencies,so the spindle system cannot operate normally during these spindle speed ranges.展开更多
With concentrated juice of mulberry as raw material, the influence of type and dosage of dry aid, the inlet air tempera- ture, inlet flow rate, and rotating speed on spray drying was studied. The spray drying processi...With concentrated juice of mulberry as raw material, the influence of type and dosage of dry aid, the inlet air tempera- ture, inlet flow rate, and rotating speed on spray drying was studied. The spray drying processing conditions of mulberry pow- der were optimized by the L9 (3^4) orthogonal test on the basis of single factor experiment. The results showed that optimum technical parameters to produce mulberry powder were: lS-cyclodextrin as dry aids with dosage of 30%, inlet air temperature of 180 ℃, rotating speed of 18 000 r/min and inlet flow rate of 30 mL/min. The mulberry powder under this optimum process conditions had a loose structure and bright color, fruity flavor was rich, the anthocyanin content for 54.67 mg/g, moisture content for 5.6% and sensory scores for 83.展开更多
Striving for cleaner production is a sought-after manufacturing philosophy.Friction stir welding(FSW)is a joiningtechnique with par excellence and far less invasive to the environment than even best conventional weldi...Striving for cleaner production is a sought-after manufacturing philosophy.Friction stir welding(FSW)is a joiningtechnique with par excellence and far less invasive to the environment than even best conventional welding processes.It is energyefficient and free from consumables,affluent and radiations.It is,thus,accepted as a clean welding process that can produceacceptable quality joints.It suffers from some major challenges of defects of its own kind that subject the process open toimprovements so as to prove itself a reliable production process.This study presents a holistic characterization of defects commonlyfound in FSW joints.The finding of the present study reveals that most defects are caused by inadequate heat generation,impropermaterial movement around the pin and inadequate material consolidation behind the pin.The amount of heat generation andmaterial stirring depends on several FSW parameters which may lead to the defect formation,if not selected properly.The resultsreported in this work are derived from sound literature support and experimentation.Prescriptions are made in the form ofcharacteristics of defects such as likelihood of their location,main responsible parameters along with the recommendations forminimizing them.展开更多
The effects of process parameters in rapid heat cycle moulding (RHCM) on parts warpage were investigated. A vehicle-used blue-tooth front shell (consisting of ABS material) was considered as a part example manufac...The effects of process parameters in rapid heat cycle moulding (RHCM) on parts warpage were investigated. A vehicle-used blue-tooth front shell (consisting of ABS material) was considered as a part example manufactured by RHCM method. The corresponding rapid heat response mould with an innovational conformal heating/cooling channel system and a dynamic mould temperature control system based on the Jll-W-160 type precise temperature controller was proposed. During heating/cooling process, the mould was able to be heated from room temperature to 160 ~C in 6 s and then cooled to 80 ~C in 22 s. The effects of processing conditions in RHCM on part warpage were investigated based on the single factor experimental method and Taguchi theory. Results reveal that the elevated mould temperature reduces unwanted freezing during the injection stage, thus improving mouldability and enhancing part quality, whereas the overheated of mould temperature will lead to defective product. The feasible mould temperature scope in RHCM should be no higher than 140 ~C, and the efficient mould temperature scope should be around the polymer heat distortion temperature. Melt temperature as well as injection pressure effects on warpage can be divided into two stages The lower stage gives a no explicit effect on warpage whereas the higher stage leads to a quasi-linear downtrend. But others affect the warpage as a V-type fluctuation, reaching to the minimum around the heat distortion temperature. Under the same mould temperature condition, the effects of process parameters on warpage decrease according to the following order, packing time, packing pressure, melt temperature, injection pressure and cooling time, respectively.展开更多
Recent new technology developments were presented in the field of industrial bending operations,including flexible stretch forming and 3D rotary stretch forming.Attempts were made to give an overview of different mech...Recent new technology developments were presented in the field of industrial bending operations,including flexible stretch forming and 3D rotary stretch forming.Attempts were made to give an overview of different mechanisms that influence dimensional accuracy,including local cross-sectional deformations such as suck-in and volume conservation effects,along with global deformations such as springback.An analytical model was developed to determine the particular influence of different material,geometry and process parameters on dimensional variability of bent components.The results were discussed in terms of overall process capability(Cp) and associated process windows.The results show that different governing mechanisms prevail in various bending operations,meaning that attention has to be placed on controlling those process parameters that really are important to part quality in each specific case.Several strategies may be defined for reducing variability.One alternative may be to design more robust process and tool technology that reduce the effect of upstream parameters on dimensional variability of the formed part.The results show that optimal tool design and technology may in specific cases improve the dimensional accuracy of a formed part.Based on the findings discussed herein,it is concluded that advances in industrial bending operations require focus on improving the understanding of mechanical mechanisms,including models and parameter development,new technology developments,including process,tool,measurement and control capabilities,and process discipline at the shop floor,combined with a basic philosophy of controlling process parameters rather than part attributes.展开更多
To enhance the nitrogen removal,a systemic monitoring of the biological and hydrological parameters of Carrousel oxidation ditch in Chongqing Jingkou Wastewater Treatment Plant was carried out to study the feasibility...To enhance the nitrogen removal,a systemic monitoring of the biological and hydrological parameters of Carrousel oxidation ditch in Chongqing Jingkou Wastewater Treatment Plant was carried out to study the feasibility of simultaneous nitrification and denitrification(SND).The variation and distribution of parameters such as flow velocity,concentration of dissolved oxygen(DO) and mixed liquor suspended solids(MLSS) in oxidation ditch were monitored and analyzed,which were major control factors for SND.The results showed that,the dimensional distribution of flow velocity,DO and MLSS were affected significantly by the operation condition of the aeration wheels.With all the four aeration wheels being in operation,DO and flow velocity were higher and the mixing of MLSS was sufficient.With three aeration wheels being in operation,the flow velocity in most of the bottom areas was enough to meet the basic requirements of no deposition,and the anaerobic region and aerobic region could exist simultaneously in one oxidation ditch,which was helpful to the process of SND.According to spatial distribution characteristics of the flow velocity,DO and soluble components under optimized condition,different functional zones of biochemical reaction in the Carrousel oxidation ditch system were defined,which might contribute to the optimization control and SND of Carrousel oxidation ditch.展开更多
A new method named rotating extrusion was developed to mitigate residual distortion of thin-plate weldments. The basic principle and characteristic of rotating extrusion as well as an efficient rotating extrusion devi...A new method named rotating extrusion was developed to mitigate residual distortion of thin-plate weldments. The basic principle and characteristic of rotating extrusion as well as an efficient rotating extrusion device were introduced. Systematic trials were conducted to investigate the influence of several technological parameters including the distance between the extrusion tool and welding torch, the pressure acting on weldment, the dimension of the extrusion tool and its rotational speed on distortion control effect. Experimental results show that, as for 2A12T4 aluminum alloy weldment with 2 mm in thickness, 150 mm in width and 350 mm in length, when appropriate technological parameters are adopted, rotating extrusion can reduce its buckling deflection to below 3% of the original value. Implementing rotating extrusion during welding with an extrusion tool more than 100 mm away from the welding torch may achieve better distortion mitigation effect.展开更多
[ Objective] This study aimed to optimize the conditions for purification of total flavones from litchi pericarp by macroporous absorption resin. E Method] The flavones adsorption rates and desorption rates of macropo...[ Objective] This study aimed to optimize the conditions for purification of total flavones from litchi pericarp by macroporous absorption resin. E Method] The flavones adsorption rates and desorption rates of macroporous absorption resins (AB-8, HPD-600, D101 ) were compared, and the technological parameters of D101 during the purification process were investigated. E Result] D101 macroporous absorption resin was ap- propriate for the purification of total flavonoids from litchi pericarp. The optimal technological conditions were selected .. the pH of sample solution was 5.0; concentration of sample solution was 4 mg/ml, with a volume of 2.5BV; 80% ethanol was used as elution solution, with a volume of 2.0BV. [ Condusion] The content of total flavones achieved 83% after separation by D101 macoporous absorption resin.展开更多
The main objective of the present work was to determine the influence of the most important technological variables of CMTP (cyclical mechanic-thermal processing) on the strain hardening in the surface layers of ste...The main objective of the present work was to determine the influence of the most important technological variables of CMTP (cyclical mechanic-thermal processing) on the strain hardening in the surface layers of steel parts. For this, it was designed a full factorial plan at two levels of five independent variables that include the whole processing in two and three cycles, the cold-forming degree and force during the plastic deformation (burnishing), and the temperature and time at the given temperature during the aging. Each cycle is composed of plastic deformation at room temperature plus aging. As dependent variables, the degree and penetration depth of strain hardening were evaluated. Based on the appropriately used set of experimental data, it had been fitted an exponential model for each dependent variables and also a two-degree polynomial fitting of in-depth evolution of microhardness profile was obtained. The amount of cycles and the cold-forming degree are the technological variables of CMTP that influence the most on strain hardening, although other variables also are significant. The microhardness profile highlights that during the CMTP, the strain hardening decreases from the outer bound to the transition zone of the surface layers, where it disappears.展开更多
A fuzzy model was presented to predict the weldment shape profile of submerged arc welds (SAW) including the shape of heat affected zone (HAZ). The SAW bead-on-plates were welded by following a full factorial desi...A fuzzy model was presented to predict the weldment shape profile of submerged arc welds (SAW) including the shape of heat affected zone (HAZ). The SAW bead-on-plates were welded by following a full factorial design matrix. The design matrix consisted of three levels of input welding process parameters. The welds were cross-sectioned and etched, and the zones were measured. A mapping technique was used to measure the various segments of the weld zones. These mapped zones were used to build a fuzzy logic model. The membership functions of the fuzzy model were chosen for the accurate prediction of the weld zone. The fuzzy model was further tested for a set of test case data. The weld zone predicted by the fuzzy logic model was compared with the experimentally obtained shape profiles and close agreement between the two was noted. The mapping technique developed for the weld zones and the fuzzy logiemodel earl be used for on-line control of the SAW process. From the SAW fuzzy logic model an estimation of the fusion and HAZ can also be developed.展开更多
Brittle pro-eutectoid cementite that forms along prior-austenite in hypereutectoid steels is deleterious to mechanical properties. The optimum process parameters which suppress the formation of pro-eutectoid cementite...Brittle pro-eutectoid cementite that forms along prior-austenite in hypereutectoid steels is deleterious to mechanical properties. The optimum process parameters which suppress the formation of pro-eutectoid cementite in hypereutectoid steels with carbon content in the range of 0.8%-1.3% in mass fraction, were investigated. Pro-eutectoid cementite formation is effectively hindered by increasing the deformation temperature and decreasing the amount of strain. Transformation at lower temperatures close to the nose of the cooling-transformation diagram also reduces the tendency of the formation of pro-eutectoid cementite. Control of prior-austenite grain size and grain boundary conditions is important. Due to larger number of nucleation sites, finer prior-austenite grain size results in the acceleration of transformation to pro-eutectoid cementite. However, large prior-austenite and straight boundaries lead to less nucleation sites of pro-eutectoid cementite. The cooling rate and carbon content should be reduced as much as possible. The transformation temperature below 660 °C and the strain of 0.5 at deformation temperature of 850 °C are suggested.展开更多
The characteristics of the confined bubble and elongated bubble in subcooled flow boiling in a single horizontal rectangular microchannel with hydraulic diameter Dh=1mm are studied experimentally. The channel with 1 &...The characteristics of the confined bubble and elongated bubble in subcooled flow boiling in a single horizontal rectangular microchannel with hydraulic diameter Dh=1mm are studied experimentally. The channel with 1 ×1mm cross section is fabricated in a thin copper plate whose confinement number is Co=2.8 and the degassed deionized water is used as the working fluid. Visualization on the confined and elongated bubbles inside the microchannel is carded out by employing a high-speed CCD camera with a rnicrolens. The recorded images are carefully analyzed to illustrate the behaviors of the confinement and elongation processes of the bubble. The boiling number is used as an adjustable parameter to regulate the operating conditions which is eventually found to take a vital role in the bubble elongation process. Two formation patterns of the confined and elongated bubble are identified and the interactions between the neighboring confined and elongated bubbles are elucidated.展开更多
基金Supported by Special Funds of National Technological and Basic Work(2006FY110700)Yunnan Province Improvement Project(2007C0219Z)Special Funds of Biological Industry of Yunnan Financial Development([2011]274)~~
文摘[Objective] The aim was to research property of maca and three plants' powders and process parameters of compound maca direct compression. [Method] Based on analysis data from SAS, bulk density, tap density, angle of repose and swelling of powders were studied as per single factor method and orthogonal exper- imental design. [Result] The test indicated that fillibilities of plant A and B, and maca powders are better and flowability plays an important role in fractional close of compound maca powder; plant A and B powders have a significant effect on bulk density of maca (P=0.0125), an extremely significant effect on swelling volume ratio (P=0.008 9) and little effect on tap density (g/ml); the optimal process condition of compound maca powder is as follows: A at 0.15 share; B at 0.10 share; C at 0.05 share; the optimal swelling volume ratio is at 2.459. [Conclusion] The technology is reasonable in formulation and satisfactory in fillibility, swelling ability, flowability, and it could serve as theoretical basis for the industrial production of maca tablets.
基金Project(10033135-2009-11) supported by the Korean Ministry of Knowledge Economy (MKE) through HNK. Co,Ltd.
文摘For the purpose of analyzing the torsional vibration caused by the gravitational unbalance torque arisen in a spindle system when it is machining heavy work piece,a 10-DOF lumped parameter model was made for the machine tool spindle system with geared transmission.By using the elementary method and Runge-Kutta method in Matlab,the eigenvalue problem was solved and the pure torsional vibration responses were obtained and examined.The results show that the spindle system cannot operate in the desired constant rotating speed as far as the gravitational unbalance torque is engaged,so it may cause bad effect on machining accuracy.And the torsional vibration increases infinitely near the resonant frequencies,so the spindle system cannot operate normally during these spindle speed ranges.
文摘With concentrated juice of mulberry as raw material, the influence of type and dosage of dry aid, the inlet air tempera- ture, inlet flow rate, and rotating speed on spray drying was studied. The spray drying processing conditions of mulberry pow- der were optimized by the L9 (3^4) orthogonal test on the basis of single factor experiment. The results showed that optimum technical parameters to produce mulberry powder were: lS-cyclodextrin as dry aids with dosage of 30%, inlet air temperature of 180 ℃, rotating speed of 18 000 r/min and inlet flow rate of 30 mL/min. The mulberry powder under this optimum process conditions had a loose structure and bright color, fruity flavor was rich, the anthocyanin content for 54.67 mg/g, moisture content for 5.6% and sensory scores for 83.
基金the University Grants Commission (UGC) for its financial assistance (vide sanction order No. F.3-40/2012(SAP-Ⅱ)) under its SAP (DRS-Ⅰ) sanctioned to the Department of Mechanical Engineering for the project entitled Friction Stir Welding and Ultrasonic Machiningfinancially supported by the King Saud University, Vice Deanship of Research Chairs
文摘Striving for cleaner production is a sought-after manufacturing philosophy.Friction stir welding(FSW)is a joiningtechnique with par excellence and far less invasive to the environment than even best conventional welding processes.It is energyefficient and free from consumables,affluent and radiations.It is,thus,accepted as a clean welding process that can produceacceptable quality joints.It suffers from some major challenges of defects of its own kind that subject the process open toimprovements so as to prove itself a reliable production process.This study presents a holistic characterization of defects commonlyfound in FSW joints.The finding of the present study reveals that most defects are caused by inadequate heat generation,impropermaterial movement around the pin and inadequate material consolidation behind the pin.The amount of heat generation andmaterial stirring depends on several FSW parameters which may lead to the defect formation,if not selected properly.The resultsreported in this work are derived from sound literature support and experimentation.Prescriptions are made in the form ofcharacteristics of defects such as likelihood of their location,main responsible parameters along with the recommendations forminimizing them.
基金Project(20122BAB206014)supported by National Natural Science Foundation of ChinaProject(51365038)supported by the Natural Science Foundation of Jiangxi Province,ChinaProject(GJJ13068)supported by the Science and Technology Program of Educational Committee of Jiangxi Province,China
文摘The effects of process parameters in rapid heat cycle moulding (RHCM) on parts warpage were investigated. A vehicle-used blue-tooth front shell (consisting of ABS material) was considered as a part example manufactured by RHCM method. The corresponding rapid heat response mould with an innovational conformal heating/cooling channel system and a dynamic mould temperature control system based on the Jll-W-160 type precise temperature controller was proposed. During heating/cooling process, the mould was able to be heated from room temperature to 160 ~C in 6 s and then cooled to 80 ~C in 22 s. The effects of processing conditions in RHCM on part warpage were investigated based on the single factor experimental method and Taguchi theory. Results reveal that the elevated mould temperature reduces unwanted freezing during the injection stage, thus improving mouldability and enhancing part quality, whereas the overheated of mould temperature will lead to defective product. The feasible mould temperature scope in RHCM should be no higher than 140 ~C, and the efficient mould temperature scope should be around the polymer heat distortion temperature. Melt temperature as well as injection pressure effects on warpage can be divided into two stages The lower stage gives a no explicit effect on warpage whereas the higher stage leads to a quasi-linear downtrend. But others affect the warpage as a V-type fluctuation, reaching to the minimum around the heat distortion temperature. Under the same mould temperature condition, the effects of process parameters on warpage decrease according to the following order, packing time, packing pressure, melt temperature, injection pressure and cooling time, respectively.
文摘Recent new technology developments were presented in the field of industrial bending operations,including flexible stretch forming and 3D rotary stretch forming.Attempts were made to give an overview of different mechanisms that influence dimensional accuracy,including local cross-sectional deformations such as suck-in and volume conservation effects,along with global deformations such as springback.An analytical model was developed to determine the particular influence of different material,geometry and process parameters on dimensional variability of bent components.The results were discussed in terms of overall process capability(Cp) and associated process windows.The results show that different governing mechanisms prevail in various bending operations,meaning that attention has to be placed on controlling those process parameters that really are important to part quality in each specific case.Several strategies may be defined for reducing variability.One alternative may be to design more robust process and tool technology that reduce the effect of upstream parameters on dimensional variability of the formed part.The results show that optimal tool design and technology may in specific cases improve the dimensional accuracy of a formed part.Based on the findings discussed herein,it is concluded that advances in industrial bending operations require focus on improving the understanding of mechanical mechanisms,including models and parameter development,new technology developments,including process,tool,measurement and control capabilities,and process discipline at the shop floor,combined with a basic philosophy of controlling process parameters rather than part attributes.
基金Project(2009ZX07315-002-01) supported by the Water Pollution Control and Management of Major Special Science and Technology, China Project(CDJXS11210001) supported by the Scientific and Technical Innovation Project of Chongqing University Graduation Foundation, China
文摘To enhance the nitrogen removal,a systemic monitoring of the biological and hydrological parameters of Carrousel oxidation ditch in Chongqing Jingkou Wastewater Treatment Plant was carried out to study the feasibility of simultaneous nitrification and denitrification(SND).The variation and distribution of parameters such as flow velocity,concentration of dissolved oxygen(DO) and mixed liquor suspended solids(MLSS) in oxidation ditch were monitored and analyzed,which were major control factors for SND.The results showed that,the dimensional distribution of flow velocity,DO and MLSS were affected significantly by the operation condition of the aeration wheels.With all the four aeration wheels being in operation,DO and flow velocity were higher and the mixing of MLSS was sufficient.With three aeration wheels being in operation,the flow velocity in most of the bottom areas was enough to meet the basic requirements of no deposition,and the anaerobic region and aerobic region could exist simultaneously in one oxidation ditch,which was helpful to the process of SND.According to spatial distribution characteristics of the flow velocity,DO and soluble components under optimized condition,different functional zones of biochemical reaction in the Carrousel oxidation ditch system were defined,which might contribute to the optimization control and SND of Carrousel oxidation ditch.
基金Project(2007DFR70070) supported by Sino-Russia Intergovernmental Science and Technology Cooperation Program
文摘A new method named rotating extrusion was developed to mitigate residual distortion of thin-plate weldments. The basic principle and characteristic of rotating extrusion as well as an efficient rotating extrusion device were introduced. Systematic trials were conducted to investigate the influence of several technological parameters including the distance between the extrusion tool and welding torch, the pressure acting on weldment, the dimension of the extrusion tool and its rotational speed on distortion control effect. Experimental results show that, as for 2A12T4 aluminum alloy weldment with 2 mm in thickness, 150 mm in width and 350 mm in length, when appropriate technological parameters are adopted, rotating extrusion can reduce its buckling deflection to below 3% of the original value. Implementing rotating extrusion during welding with an extrusion tool more than 100 mm away from the welding torch may achieve better distortion mitigation effect.
基金Supported by Key Project of Science and Technology of Luzhou City(651)
文摘[ Objective] This study aimed to optimize the conditions for purification of total flavones from litchi pericarp by macroporous absorption resin. E Method] The flavones adsorption rates and desorption rates of macroporous absorption resins (AB-8, HPD-600, D101 ) were compared, and the technological parameters of D101 during the purification process were investigated. E Result] D101 macroporous absorption resin was ap- propriate for the purification of total flavonoids from litchi pericarp. The optimal technological conditions were selected .. the pH of sample solution was 5.0; concentration of sample solution was 4 mg/ml, with a volume of 2.5BV; 80% ethanol was used as elution solution, with a volume of 2.0BV. [ Condusion] The content of total flavones achieved 83% after separation by D101 macoporous absorption resin.
文摘The main objective of the present work was to determine the influence of the most important technological variables of CMTP (cyclical mechanic-thermal processing) on the strain hardening in the surface layers of steel parts. For this, it was designed a full factorial plan at two levels of five independent variables that include the whole processing in two and three cycles, the cold-forming degree and force during the plastic deformation (burnishing), and the temperature and time at the given temperature during the aging. Each cycle is composed of plastic deformation at room temperature plus aging. As dependent variables, the degree and penetration depth of strain hardening were evaluated. Based on the appropriately used set of experimental data, it had been fitted an exponential model for each dependent variables and also a two-degree polynomial fitting of in-depth evolution of microhardness profile was obtained. The amount of cycles and the cold-forming degree are the technological variables of CMTP that influence the most on strain hardening, although other variables also are significant. The microhardness profile highlights that during the CMTP, the strain hardening decreases from the outer bound to the transition zone of the surface layers, where it disappears.
基金Supported by the IIT Roorkee Project under Grant No. FIG-A Scheme-A
文摘A fuzzy model was presented to predict the weldment shape profile of submerged arc welds (SAW) including the shape of heat affected zone (HAZ). The SAW bead-on-plates were welded by following a full factorial design matrix. The design matrix consisted of three levels of input welding process parameters. The welds were cross-sectioned and etched, and the zones were measured. A mapping technique was used to measure the various segments of the weld zones. These mapped zones were used to build a fuzzy logic model. The membership functions of the fuzzy model were chosen for the accurate prediction of the weld zone. The fuzzy model was further tested for a set of test case data. The weld zone predicted by the fuzzy logic model was compared with the experimentally obtained shape profiles and close agreement between the two was noted. The mapping technique developed for the weld zones and the fuzzy logiemodel earl be used for on-line control of the SAW process. From the SAW fuzzy logic model an estimation of the fusion and HAZ can also be developed.
基金Project(51222405)supported by the National Science Foundation for Outstanding Young Scholars of ChinaProject(51034002)supported by the National Natural Science Foundation of China+1 种基金Project(132002)supported by the Fok Ying Tong Education Foundation,ChinaProject(N120502001)supported by the Basic Scientific Research Operation of Center University of China
文摘Brittle pro-eutectoid cementite that forms along prior-austenite in hypereutectoid steels is deleterious to mechanical properties. The optimum process parameters which suppress the formation of pro-eutectoid cementite in hypereutectoid steels with carbon content in the range of 0.8%-1.3% in mass fraction, were investigated. Pro-eutectoid cementite formation is effectively hindered by increasing the deformation temperature and decreasing the amount of strain. Transformation at lower temperatures close to the nose of the cooling-transformation diagram also reduces the tendency of the formation of pro-eutectoid cementite. Control of prior-austenite grain size and grain boundary conditions is important. Due to larger number of nucleation sites, finer prior-austenite grain size results in the acceleration of transformation to pro-eutectoid cementite. However, large prior-austenite and straight boundaries lead to less nucleation sites of pro-eutectoid cementite. The cooling rate and carbon content should be reduced as much as possible. The transformation temperature below 660 °C and the strain of 0.5 at deformation temperature of 850 °C are suggested.
基金supported by National Natural Science Foundation of China (No. 51176008)the Fundamental Research Funds for the Central Universities (No.2011YJS267)Jiangsu Key Laboratory of Process Enhancement & New Energy Equipment Technology(Nanjing University of Technology)
文摘The characteristics of the confined bubble and elongated bubble in subcooled flow boiling in a single horizontal rectangular microchannel with hydraulic diameter Dh=1mm are studied experimentally. The channel with 1 ×1mm cross section is fabricated in a thin copper plate whose confinement number is Co=2.8 and the degassed deionized water is used as the working fluid. Visualization on the confined and elongated bubbles inside the microchannel is carded out by employing a high-speed CCD camera with a rnicrolens. The recorded images are carefully analyzed to illustrate the behaviors of the confinement and elongation processes of the bubble. The boiling number is used as an adjustable parameter to regulate the operating conditions which is eventually found to take a vital role in the bubble elongation process. Two formation patterns of the confined and elongated bubble are identified and the interactions between the neighboring confined and elongated bubbles are elucidated.