This paper deals about testing thermal properties of the cooling device with heat pipes at inclination position, in consequence of using the natural convection to improve heat transfer properties. Head point testing o...This paper deals about testing thermal properties of the cooling device with heat pipes at inclination position, in consequence of using the natural convection to improve heat transfer properties. Head point testing of cooling device is monitoring temperature on the aluminium block of energy converter, heat pipes and ribs under temperature condition 30 ℃ in thermostatic chamber. Testing of the device was performed at tilt angles positions 0, 10 and 20° from the vertical level. The heat flux loaded to energy converter was 450 W. The next goal of the paper is to research on influence working position of the wick heat pipe on their thermal performance. In this research heat pipes were made with capillary structure sintered from copper powder granularity 100, 63 and 50 μm filled with water and ethanol. Next heat pipe thermal performance was performed by measuring heat source and working positions. Knowledge of these two research goals can bring potential improvements in purpose of cooling device for effective heat sink from high power electronic components.展开更多
文摘This paper deals about testing thermal properties of the cooling device with heat pipes at inclination position, in consequence of using the natural convection to improve heat transfer properties. Head point testing of cooling device is monitoring temperature on the aluminium block of energy converter, heat pipes and ribs under temperature condition 30 ℃ in thermostatic chamber. Testing of the device was performed at tilt angles positions 0, 10 and 20° from the vertical level. The heat flux loaded to energy converter was 450 W. The next goal of the paper is to research on influence working position of the wick heat pipe on their thermal performance. In this research heat pipes were made with capillary structure sintered from copper powder granularity 100, 63 and 50 μm filled with water and ethanol. Next heat pipe thermal performance was performed by measuring heat source and working positions. Knowledge of these two research goals can bring potential improvements in purpose of cooling device for effective heat sink from high power electronic components.